230 likes | 243 Views
Explore groundbreaking research on entanglement, holography, and black hole thermodynamics, presented in two volumes. Discover the noncovariance of reduced density matrices, implications for entropy, and entanglement in old applications like black hole entropy and Hawking radiation.
E N D
DANNY TERNO & ETERA LIVINE PRODUCTION With contributions from Asher Peres, Viqar Hussain and Oliver Winkler PRESENTS
B A L K H C E O L when T M E N E N T ' L E met
Outline Volume1:newproperties • Noncovariance of reduced density matrices • Noninvariance of entropy • Implications to holography and thermodynamics Volume2:old applications • Entanglement and black hole entropy • Entanglement and Hawking radiation
spin momentum classical info Noncovariance (1) Example: Lorentz transform of a single massive particle transform:v along thez-axis important parameter:
Partial trace is not Lorentz covariant Spin entropy is not scalar Distinguishability depends on motion Peres and Terno,Rev. Mod. Phys. 76, 93 (2004) Entropy
Noncovariance (2) Geometric entropy here there there trace out “there” Bombelli et al, Phys. Rev. D34, 373 (1986) Holzhey, Larsen and Wilczek, Nucl. Phys. B424, 443 (1994) Callan and Wilczek, Phys. Lett. B333, 55 (1994).
Decomposition of Lorentz transformations ? = trivial 1D rep irrep of 1-particle states not irreducible no correlations no Bell-type violations Terno, Phys. Rev. Lett. 93, 051303 (2004) Transformations do not split into here and there spaces
Noninvariance(1) Boundary conditions & cut-offs Bekenstein, Lett. Nuovo Cim. 4, 737 (1972) …. Busso, Rev. Mod. Phys. 74,825 (2002) Model Yurtsever, Phys. Rev. Lett. 91, 041302 (2003) Number of degrees of freedom N is frame-dependent
Spacelike holographic bound Lorentz boost: factors 1/γ both area and entropy change Saved ? Terno, Phys. Rev. Lett. 93, 051303 (2004) v
- Black holes: invariance Two observers with a relative boost Hawking’s area theorem Model 1+1 calculations: the same crossing point, relative boost Fiola, Preskill, Strominger, Trivedi, Phys. Rev. D 59, 3987 (1994)
Noninvariance(2) Accelerated cavity Moore, J. Math. Phys. 11, 2679 (1970) Levin, Peleg, Peres, J.Phys.A 25, 6471 (1992) Accelerated observers & matter beyond the horizon Terno, Phys. Rev. Lett. 93, 051303 (2004)
Entanglement on the horizon Object: static black hole States: spin network that crosses the horizon Requirement: SU(2) invariance of the horizon states Qubit BH
Standard counting story area 2nspins constraint number of states entropy Fancy counting story density matrix entropy
Entanglement Measure: entanglement of formation 2 vs 2n-2 States of the minimal decomposition degeneracy indices Alternative decomposition: linear combinations Its reduced density matrices: mixtures Entropy: concavity
unentangled fraction entanglement n vs n Entropy of the whole vs. sum of its parts reduced density matrices BH is not made from independent qubits, but… Livine and Terno, gr-qc/0412xxx
Entanglement and Hawking radiation Hussein,Terno and Winkler, in preparation
T M E N E N T ' L E when B A L K H C E O L met Summary • Reduced density matrices are not covariant • Entropy (and the # of degrees of freedom) are observer-dependent • Entanglement is responsible for the logarithmic corrections of BH entropy • Entropy of the BH radiation = entanglement entropy between gravity and matter
Thanks to Jacob Bekenstein Ivette Fuentes-Schuller Florian Girelli Netanel Lindner Rob Myers Johnathan Oppenheim David Poulin Terry Rudolph Frederic Schuller Lee Smolin Rafael Sorkin Rowan Thomson
renormalization of entropy Technique: Entropy usually diverges Unruh effect General: cut-off
Unruh+ Matter outside the horizon n particles in the mode (k,m) Audretsch and Müller, Phys. Rev. D 49, 4056 (1994) Splitting: usual + super
Two observers: the same acceleration, different velocities Special case renormalized quantities temperature Of what? two subsystems General case: temperature is undefined