1 / 22

Krylov Subspace Methods & Nullspace for Resistive MHD

Krylov Subspace Methods & Nullspace for Resistive MHD. Jin Chen Plasma Physics Lab Princeton University. Background I: Resistive MHD equation. Supplementary equations. represent fast thermal equilibration along field lines artificial wave speed sB/  1/2.

pparedes
Download Presentation

Krylov Subspace Methods & Nullspace for Resistive MHD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Krylov Subspace Methods &Nullspace for Resistive MHD Jin Chen Plasma Physics Lab Princeton University Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  2. Background I: Resistive MHD equation Supplementary equations • represent fast thermal equilibration along field lines • artificial wave speed sB/1/2 extreme stiffness and anisotropy. Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  3. Numerical Challenges • Stiffness: Time-scales that impact nonlinear MHD evolution include • Parallel particle motion leading to parallel thermal equilibration • over flux surfaces in 1-10 nanoseconds (10^-9) . • MHD wave propagation over global scales in microseconds (10^-6) . • Magnetic fluctuations and tearing • in hundreds of microseconds to milliseconds (10^-3) . • Nonlinear profile modification and transport • in tens to hundreds of milliseconds (10^-3). • Global resistive diffusion over seconds. • Anisotropy: Magnetization of nearly collisionless particles leads to • Effective thermal diffusivity ratios, , reaching and exceeding 1010. • Shear wave resonance that allows nearly singular behavior of MHD modes. Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  4. Background II: Poisson Equation with Neumann Boundary Condition F equation in MHD (related to perturbed toroidal flux) • Solvability not every system of equation has a solution. • Unique if F is a solution, so is F + c. Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  5. Outlines • Introduction • Domain decomposition and grid topology • Lagrange finite element discretization • Numerical singularity for Neumann Boundary Condition and Nullspace • CG and GMRES for non-singular linear equation • Nullspace based CG and GMRES for singular linear equation • Numerical Experiments • Conclusion Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  6. Introduction I: Scalar Representation Each Time Step: Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  7. Introduction II: 1st and 2nd kind of Elliptic Equations g is the resistivity 13 elliptic solver calls at each time step. Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  8. Parallel Domain Decomposition • (structured) finite difference in the toroidal direction • (unstructured) finite elements in the poloidal planes Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  9. Parallel Grid Topology Parallel Ordering Global Ordering Local Ordering Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  10. Lagrange Finite Element • Linear element • 2nd order element • 3rd order element Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  11. GMRES and ICCG for Au=b 16p X 20,000 vertices X 13 unknowns A u (per time step) • Unsymmetrical: GMRES. • Reform the poisson operator to have symmetric structure: CG. Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  12. 1.Solvability: 2.Unique: Least square solution Mean zero Numerical Singularity for Poisson Equation with Neumann B.C. Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  13. Nullspace Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  14. Nullspace based CG for singular systems Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  15. If Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  16. If … Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  17. If … Re-orthogonlization To assure there exists a solution. Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  18. Nullspace based GMRES for singular systems Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  19. Result II: GMRES v.s. ICCG 16p X 20,000 vertices X 13 unknowns A u (per time step) From GMRES to ICCG, achieved A factor of 2 times speedup Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  20. Result III: Application of Nullspace • F equation, • Singular check: Ae=0, • Solvability check: (b,e)=0, • Re-orthogonalization: b=b(b,e)/(e,e), • Uniqueness check: (x,e)=0, • CG with nullspace, • GMRES with nullspace, Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  21. Eigenmode k=2 l=0 Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

  22. Conclusion • Achieved, • Making progress, • Numerical Challenges left for future. Krylov Subspace Methods & Nullspace for Resistive MHD, Jin Chen, PPPL, SIAM2004

More Related