590 likes | 734 Views
Inverse of Trig Functions. Module 9 Lecture 3. Inverse trig functions used in eg Find the angle. sin, cos, tan. 5. 2. value. angle. . arcsin, arccos, arctan. We use the arc notation, the other common notation is. This is not a good notation as.
E N D
Inverse of Trig Functions Module 9 Lecture 3
Inverse trig functions used in eg Find the angle sin, cos, tan 5 2 value angle arcsin, arccos, arctan We use the arc notation, the other common notation is This is not a good notation as Inverse trig functions are inverse to the normal trig functions
so so Make the subject So Differentiation of Inverse Trigonometric Functions How can we differentiate arcsinx? Reduce to a function we can differentiate by setting Differentiating each side wrt x Get rid of the y
Trigonometrical Substitutions We can make trig substitutions to integrate integrals of the following forms
const = 9 coeff = 4 Example 1 1 Make substitution
Example 1 1 Make substitution 2 Find dx
Example 1 1 Make substitution 2 Find dx
Example 1 1 Make substitution 2 Find dx
dx ò 2 - 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx
dx ò 2 - 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx
dx ò 2 - 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx
dx ò 2 - 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx
dx ò 2 - 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx
dx ò 2 - 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 4 Evaluate integral
dx ò 2 - 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 4 Evaluate integral
dx ò 2 - 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 4 Evaluate integral
dx ò 2 - 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 4 Evaluate integral
dx ò 2 - 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 4 Evaluate integral
Make sin the subject from the initial substitution 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 - 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
const = 9 coeff = 4 Example 1 1 Make substitution
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
dx ò 2 + 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Substitute back 4 Evaluate integral
Integrations with limits In this case we substitute for the limits and so do not need to back substitute at the end Example
dx 3 / 2 ò 2 - 0 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx Same as before 5 Evaluate integral 4 Change limits
dx 3 / 2 ò 2 - 0 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Evaluate integral 4 Change limits
dx 3 / 2 ò 2 - 0 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Evaluate integral 4 Change limits
dx 3 / 2 ò 2 - 0 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Evaluate integral 4 Change limits
dx 3 / 2 ò 2 - 0 9 4 x 1 Make substitution 3 Substitute into denominator 2 Find dx 5 Evaluate integral 4 Change limits