130 likes | 321 Views
5.8 Inverse Trig Functions. Definition of Inverse Trig Functions. Graphs of inverse functions. Page 381. Ex. 1 Evaluating Inverse Trig Functions. a) arcsin (-1/2) b) arcsin (0.3). Properties of Inverse Functions. If -1≤x≤1 and – π /2≤y≤ π /2, then: sin( arcsin x)=x and arcsin (sin y)=y
E N D
Graphs of inverse functions • Page 381
Ex. 1 Evaluating Inverse Trig Functions • a)arcsin(-1/2) • b)arcsin(0.3)
Properties of Inverse Functions • If -1≤x≤1 and –π/2≤y≤π/2, then: • sin(arcsin x)=x and arcsin(sin y)=y • If –π/2≤y≤π/2, then • tan(arctan x)=x and arctan(tan y)=y • If |x|≥1 and 0≤y≤π/2 or π/2≤y≤π, then • sec(arcsec x)=x and sec(arcsec y)=y • Similar properties hold true for the other trig functions
Solving an Equation • arctan(2x – 3) = π/4
Ex. 3 Use Right Triangles to Solve • Find cos(arcsin x), where 0≤y≤π/2
Ex 4 Write the expression in algebraic form • cos(arcsin 2x)
Ex. 5 Find the derivative • a) • b)
Ex 5. cont… • c) • d)