150 likes | 273 Views
Detection of transits of extrasolar planets with the GAIA new design. Noël Robichon DASGAL - CNRS UMR 6633. depth of a transit. m ≈ F/F = (R P /R * ) 2. R Earth = 0.1 R Jup = 0.01 R Sun Earth : m=10 -4 Jupiter : m=10 -2 HD 209458 : m=1.7 10 -2.
E N D
Detection of transits of extrasolar planets with the GAIA new design Noël Robichon DASGAL - CNRS UMR 6633
depth of a transit m ≈ F/F = (RP/R*)2 REarth = 0.1 RJup = 0.01 RSun Earth : m=10-4 Jupiter : m=10-2 HD 209458 : m=1.7 10-2 sG > 10-3 only Jupiter size objects with GAIA
duration of a transit Vcirc = 2pa/P Dt = 2R*/Vcirc a ( if RP<<R* ) Dt/P = R*/pa = R*/pM*1/3P2/3 to the observer 2R* Earth : P = 1 yr Dt/P = 1.5 10-3 Jupiter : P = 11.3 yr Dt/P = 1.3 10-4 HD 209458 : P = 3.5 days Dt/P = 3.2 10-2 GAIA : # of observations 150-300 P < 10 days
geometric probability of observation star pgeo=p(q<2R*/a)=2sin(R*/2a) pgeo=R*/a=R*/M*1/3P2/3 (if RP<<R*) planet cone of transit visibility q 2R* a Earth pgeo= 5 10-3 Jupiter pgeo= 4 10-4 HD 209458 pgeo= 0.1 in favor of very short periods
Simulations • mass-MV and mass-radius relations from litterature • photometric errorsG(G) • RP=1RJup or 1.3 RJup • Monte Carlo simulation in bins of (b, G, MV, P) • Galaxy model (Haywood) N*(b, G, MV) • scanning law of the satellite PNobs/transit(b, N) • probability of having an observable transit star • Pobs (P, MV) = Pgeo(MV, P) x 0.01 log(P+/P-)/log(10) • probability of detecting the transit Pdetec(N, G, MV) • less than 10 % of false detection and N>5 or 7 (3 or 4 ≠ epochs)
4 10 1000 MG bins 4 5 6 100 7 8 9 10 >11 10 1 2 4 6 8 10 12 14 16 Number of transited stars if RP = 1.3 RJup Npts/transits>max(5, N(#false/#true<10%)) # of stars with transiting planet TOTAL: 29000 stars Period
4 10 1000 MG bins 4 5 6 100 7 8 9 10 >11 10 1 2 4 6 8 10 12 14 16 Number of transited stars if RP = 1.0 RJup Npts/transits>max(5, N(#false/#true<10%)) # of stars with transiting planet TOTAL: 10300 stars Period
4 10 MG bins 1000 4 5 6 7 8 100 9 10 >11 10 1 13 14 15 16 17 18 19 20 Number of transited stars as a function of G RP = 1.3 RJup Npts/transits>max(5, N(#false/#true<10%)) # of stars with transiting planet G
Summary of the results from simulations RP = 1.0 RJup Npts/transit>5 10300 RP = 1.3 RJup Npts/transit>5 29000 RP = 1.0 RJup Npts/transit>7 5800 RP = 1.3 RJup Npts/transit>7 15500
Conclusions • simulation predict 5.103 to 30.103 detectable transits • things to improve: • countings of the Galaxy model -> less transited stars • better limits in G and MV -> more transited stars • better precision in AF photometry-> more transited stars • take account of variable stars: spots, grazing eclipsing binaries... • detection algorithm • recovering unbiased planet distribution = f(P, MP, M*…) • unknowns: • statistics: % of HJ = f(ST)? • properties of planets: radii? Pmin?…
0,1 0,01 smag 0,001 0,0001 8 10 12 14 16 18 20 22 G Photometric precision sF/F = (RON2+SKY+F)1/2/F G per AF CCD G per AF transit (9 CCDs) G2 star RP=1.3 RJup mag per MBP transit (sum of 10 bands + MSM) G2 star RP=1 RJup 0.001 mag has been quadratically added in the simulation
-0,01 -0,01 -0,005 -0,005 0 0 0,005 0,005 0,01 0,01 0,015 0,015 0,02 0,02 0 0,2 0,4 0,6 0,8 1 0 0,2 0,4 0,6 0,8 1 Simulation of HD 209458 for two different TC -0.000572226 -0.000572226 0.802909 0.802909
distribution of number of points during a transit P=10.25 days (dt/P = 1.7%) b = +5° (170 points) P=3 days (dt/P = 3%) b = +35° (280 points) percentage # of points
20 15 10 5 0 0,5 1 1,5 2 2,5 3 distribution of periods of known systems 4 % of stars have an planetary system 1 % have a planet with P < 30 days # of stars with planet minimum period observed: 3 days log P (days)
1 0,01 0,0001 -6 10 -8 10 -10 10 0 5 10 15 20 probability of having N points greater than ps p=1.5 probability p=2 p=3 p=2.5 N