1 / 10

MENENTUKAN FPB DENGAN ALGORITMA EUCLIDES

MENENTUKAN FPB DENGAN ALGORITMA EUCLIDES. Jika maka dengan menerapkan algoritma euclides , pembagian berkali -kali diperoleh :. CONTOH :. Tentukan FPB(9800, 180) 9800 = 180.54+80 180 = 80.2+20 80 = 20.4 FPB(9800, 180)= 20

quasim
Download Presentation

MENENTUKAN FPB DENGAN ALGORITMA EUCLIDES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MENENTUKAN FPB DENGAN ALGORITMA EUCLIDES

  2. Jikamakadenganmenerapkanalgoritmaeuclides, pembagianberkali-kali diperoleh :

  3. CONTOH : • Tentukan FPB(9800, 180) 9800 = 180.54+80 180 = 80.2+20 80 = 20.4 FPB(9800, 180)= 20 Jika FPB(a,b)=d makaadabilanganbulat x dan y sehinggaax+by=d FPB(9800, 180)= 20 20 = 180-80.2 20 = 180-(9800-180.54)2 20 = 180-9800.2+180.108 20 = 180.109-9800.2 20 = 9800(-2)+180(109) Jadi x=-2 dan y=109

  4. KELIPATAN PERSEKUTUAN TERKECIL

  5. TEOREMA :

  6. BUKTI :

  7. CONTOH :

  8. LATIHAN : Tentukan FPB, nilai x dan y serta KPK daripasanganbilanganberikut : • 10.587 dan 534 • 1.587.645 dan 6.755 • 12.345 dan 9.999

  9. BILANGAN PRIMA DAN FAKTORISASI PRIMA

  10. Bilangan prima adalahsuatubilanganbulat p>1 yang tidakpunyafaktorpositifselain 1 dan p. • Bilanganbulat p>1 yang bukanmerupakanbilangan prima disebutbilangankomposit. • 1 bukanbilangan prima danbukanbilangankomposit (unit).

More Related