170 likes | 401 Views
Bell Work. Evaluate using the Properties of Exponents x m * x n = ________ X m = ________ 4. √x = _______ x n (Rewrite with exponent) 3. ( x m ) n = __________. Quick Review of Logs. log b b = ______ ln e= _______ ln 1 = _______. 1. 1. 0.
E N D
Bell Work Evaluate using the Properties of Exponents • xm * xn = ________ • Xm= ________ 4. √x = _______ xn (Rewrite with exponent) 3. (xm)n = __________
Quick Review of Logs • logbb= ______ • ln e= _______ • ln 1 = _______ 1 1 0
Properties of Logarithms • log b (xy) = logbx+logby • logb(x/y) =logbx – logby • logbxp = p logbx • ln (xy) = lnx + lny • ln (x/y) = lnx – lny • lnxp= plnx
ln(xy)= lnx + lnylogb(xy) = logbx+ logby • log3(5 * 2)= • log7(2x)= • log4(5xy)= ln (3*2) = ln (5x)= ln (2ab)= Log35 + log3 2 Ln 3 + ln 2 ln 5 + ln x Log7 2 + log7 x ln 2 + ln a + ln b Log45+ log4x+ log4y
ln(x/y) = lnx – lnylogb(x/y) = logbx-logby • Log 2 (3/5) = • Log b (a/c) = • Log b (7/x) = • Ln(7/5) = • Ln (a/b)= • Ln (8/y)=
Logaxp = plogaxlnxp= plnx • Log5x3 = • Ln x5 = 3 log 5x 5 ln x
Applying more than one property • log10(5x3y) log 5 + 3 log x + log y • ln √(3x-5) 7 ½ ln (3x-5) – ln 7
Applying more than one property • log3(3x)½ ½ + ½ log3 x • log3 3x½ 1+½ log3x
Applying more than one property • log 3x2y • log5(x-4)⅗ • lnx3y2 z4 • ln (__x__) 2 x2 - 1
Using properties to condense • 2 ln (x+2) – ln x ½ • logx + 3 log (x+1) • ½ln 3 + ½ln x • ⅓[log2x + log2(x-4)]
Using properties to condense • log x – log y • 4 ln ( x-4) – 2 lnx • log58 - log5t • [4 ln x + 4 ln (x+5)] – 2 ln (x-5)
Write each logarithm in terms ofln 2 and ln 3 • ln 6 • ln_2_ 27 • ln 12
Write each logarithm in terms of ln 2 and ln 5 • ln 10 • ln 5 • 32 • ln 20
WITHOUT USING A CALCULATOR find the exact value of the logarithm • log 5 (1/125) • log 4 (-16) • log42 + log4 32
WITHOUT USING A CALCULATORfind the exact value of the logarithm • 3 ln e 4 • 2log3 81 • -log749
Evaluate using the calculator • Calculators automatically use a base of 10 when you plug in a logarithm. • When the base is something other than 10, you can still use the calculator but you MUST use the change of base formula. • logax = log x OR ln x log a ln a **EITHER WILL WORK**
Evaluate using the calculator • log 2 58 • log 9 15 • log 3 7