1 / 38

Power-law tailed spectra from equilibrium

Power-law tailed spectra from equilibrium. Particle spectra Non-extensive Boltzmann eq. (NEBE) Particular distributions Parton cascade demo Lattice strategy. T.S.Bir ó and G.Purcsel ( KF KI RMKI , Giessen) A.Jakovác (BMGE), G.Györgyi (ELTE), Zs.Schram (DE).

rafal
Download Presentation

Power-law tailed spectra from equilibrium

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Power-law tailed spectra from equilibrium • Particle spectra • Non-extensive Boltzmann eq. (NEBE) • Particular distributions • Parton cascade demo • Lattice strategy T.S.Biróand G.Purcsel (KFKI RMKI,Giessen) A.Jakovác (BMGE), G.Györgyi (ELTE), Zs.Schram (DE) Quark Matter, Budapest, 3-8August, 2005

  2. Hadron statistics hep-ph/0409157 JPG31:1, 2005 • Gibbs thermodynamics: exponential • Non-extensive thermodynamics: power-law(pQCD jets are angle correlated) • Collective flow effects: scaling breakdown • low pt and high pt: connected?

  3. Particle spectra and Eq. of State  3 3 (2h) d N  = d, k)f(/T) 3 V dk   Spectrum Spectral function thermodynamics  Gibbs Tsallis . . . Peak: particle bgd.: field Shifted peak: quasiparticle

  4. t Experimental spectra: pp t mesons, 30 GeV, p -tail v = 10.1 ± 0.3 pions, 30 GeV, m -tail v = 9.8 ± 0.1 pions, 540 GeV, m -tail v = 8.1 ± 0.1 quarkonia, 1.8 TeV, m -tail v = 7.7 ± 0.4 t tt tt tt t tt Gazdiczki + Gorenstein (hep-ph / 0103010)

  5. t Experimental spectra: AuAu t pi, K, p, 200 GeV, m -scaling (i.e. E = m ) v = 16.3 (E = 2.71 GeV, T = 177 MeV) t t t c t Schaffner-Bielich, McLerran, Kharezeev (NPA 705, 494, 2002)

  6. RHIC Au Au heavy ion collision 200 GeV 0  from AuAu at 200 GeV (PHENIX) pions 1E-0 min. bias 1E-1 1E-2 v = 9.527 ± 0.181 E = 1.008 ± 0.0973 GeV 2 1E-3 c d  2p dp dy 1E-4 q = 1.11727 T = 118 ± 9 MeV t t 1E-5 1E-6 1E-7 1E-8 T = 364 ± 18 MeV 1E-9 0 2 4 6 8 10 12 14 p (GeV) t

  7. t Experimental spectra: cosmic rays t before knee, m -scaling (i.e. E = m ) v = 5.65 (E = 0.50 GeV, T = 107 MeV) in ankle, v = 5.50 (E = 0.48 GeV, T = 107 MeV) t t t c c Ch. Beck cond-mat / 0301354

  8. t Experimental spectra: e-beam t integral over longitudinal momenta TASSO 14 GeV v = 51 (E = 6.6 GeV) TASSO 34 GeV v = 9.16 (E = 0.94 GeV) DELPHI 91 GeV v = 5.50 (E = 0.56 GeV) DELPHI 161 GeV v = 5.65 (E = 0.51 GeV) t c c c t c Bediaga et.al. hep-ph / 9905255

  9. General Langevin problem TSB+GGy+AJ+GP, JPG31, 2005 < z(t) > = 0 . ∂E p = z - G(E) < z(t)z(t') > = 2 D(E) (t-t') ∂p In the Fokker – Planck equation: K (p) = D(E) 2 ∂E = K (p) -G(E) 1 ∂p Stationary distribution: ( ) A dE ∫ f(p) = exp - G(E) D(E) D(E)

  10. General inverse slope Stationary distribution: ( ) dE ∫ f(p) = A exp - T(E) 1) Gibbs: T(E) = T  exp(-E/T) 2) Tsallis: T(E) = T/q + (1-1/q) E  -q /(q-1) ( 1 + (q-1) E / T) T( T ) = T : a fixed point of the sliding slope

  11. Test v = 1 + E / T c Gaussian fit to parton distribution: < p > = D / G = 1 ... 1.5 GeV Power-tail in e+e- experiment (ZEUS): v = 5.8 ± 0.5 -> G / C = 9.6 ± 1 Derived inclination point at p = √ D / C = 3 ... 4 GeV. 2 t ☺ c

  12. All central transverse slopes All central transverse slopes Flow

  13. Transverse flow correction Energy in flowing cell:  E = u p = (m cosh(y-) - v p cos(-) )  T T Most detected: forward flying (blue shifted) at = y, = . E = (m - v p ) T T Spectrum ~ ∫d d f(E)

  14. Transverse flow corrected slopes forward blast wave!

  15. Average transverse momentum

  16. T. S. Bíró and G. Purcsel (University of Giessen, KFKI RMKI Budapest) Non-Extensive Boltzmann Equation hep-ph/0503204 • Non-extensive thermodynamics • 2-body Boltzmann Equation + non-ext. rules • Unconventional distributions: quasi-energy • H-theorem and non-extensive entropy • Principles of the numerical simulation

  17. Generalized sum f = f f statistical independence 1 12 2 non-extensive addition rule E = h ( E , E ) 1 12 2 non-extensive addition rules for energy, entropy, etc. h ( x, y ) ≠x + y

  18. 2,3 1,2 Sober addition rules associativity: 3 1 h ( h ( x, y ) , z ) = h ( x, h ( y, z ) ) general math. solution: maps it to additivity X ( h ) = X ( x ) + X ( y ) X( t ) is a strict monotonic, continous real function, X(0) = 0

  19. Boltzmann equation  ∫ f = w ( f f - f f ) 3 4 1 2 1 1234 234 2 w = M ( p + p - p - p )  2 3 4 1234 1234 1 (h( E , E ) - h( E , E )) 2 3 4 1

  20. canonical equilibrium: f ~ exp ( -X(E ) / T ) • 2-body collisions: X(E ) +X(E ) = X(E ) +X(E ) • non-extensive entropy density: s = f X (-ln f ) • H-theorem for X( S ) = - f ln f Consequences 1 2 3 4 -1 s ∫ tot s

  21. NEBE control sums Non-extensive entropy:

  22. Entropies Boltzmann Kaniadakis (NLBE) Tsallis entropy Rényi entropy NEBE

  23. T h e r m o d y n a m i c s e s rule additive equilibrium entropy name h ( x, y ) X ( E ) f ( E ) s [ f ] general x + y E exp( - E / T) - f ln f Gibbs -1/aT q 1 x + y + a xy ln(1+aE) (1+aE) (f - f)/(q-1) Tsallis a q = 1 - aT b 1/b b incomplete gamma fct. b b ( x + y ) (aE) / a exp(-(aE) /aT) Lévy 1 - 1/ aT 1 q a x y ln aE (aE) ln ∫f Rényi 1- q a q = 1 - aT

  24. Test particle simulation y h(x,y) = const. E E 2 E 4 E x E 3 E 1 E 3 -1 ∫ uniform random: Y(E ) = (  h/  y) dx 3 h=const 0

  25. Movie: Tsallis a = 0 y=2

  26. Movie: Tsallis a = 1 y=2

  27. Movie: Tsallis a = -0.25, y=2

  28. Tsallis distribution

  29. Limiting temperature with Tsallis distribution ( with A. Peshier, Giessen ) Massless particles, d-dim. momenta, N-fold Hagedorn d <X(E)> TE  c ; = T = E / d c H j=1 E – j T c N For N  2: Tsallis partons  Hagedorn hadrons

  30. Lattice Monte Carlo with fluctuating (Gamma-distributed) temperature (Research with Zs. Schramm, Debrecen) G-distributed a /a ratio Average effective action Large system limit Metropolis strategy s t

  31. q = 1 + 1 / c Canonical distribution: POWER – LAW TAILED -(c+1) f  exp( - X / T ) = ( 1 + E / cT ) This equals to Gamma distributed Gibbs factors: -(c+1) c 1  -t -xt/c ( 1 + x / c ) = dt t e e (c+1) Interpretations: fluctuating temperature, energy imbalance, multiplicative + additive noise, . . .

  32. Lattice theory Expectation values of observables: -S(t,U) DU dt w (t) e t A(U) ∫ ∫ v c A = -S(t,U) DU dt w (t) e ∫ ∫ c Action: S(t,U) = a(U) t + b(U) / t t= a / a asymmetry parameter t s

  33. Lattice theory: effective action ∞ c c+v-1 -(a+c)t - b/t c ∫ S = dt t e - ln G(c) eff 0 Plaquette sums: space-space: a = ∑ (1 – Re tr P ss) space-time: b = ∑ (1 – Re tr P ts) Evaluation methods: • exact analytical • saddle point • numerical (Gauss-Laguerre)

  34. Lattice theory: effective action (c+v)/2 c c b ( ( ) ) S = 2K (2  b(a+c) ) - ln a+c c+v eff G(c) Asymptotics: • large a,b finite c: 2  ab • large a,b,c and a-b<< (a+b): a + b

  35. Order parameter: Re Polyakov

  36. Strong – weak coupling transition action: MC a+b, TS < at + b/t >

  37. Strong – weak coupling transition Polyakov line: t-independent both for MC and TS

  38. Summary • Power-law distributions are predicted by non-extensive thermodynamics • Multiplicative noise  sliding slope T(E) • NEBE also leads to power-law tails • Tsallis distribution can be modelled by Gamma distributed inv. temperature • Non-extensive statistical properties are worth to study

More Related