1 / 19

OPERA_ROC : a front-end chip for OPERA multi-anode photomultipliers

O scillation P roject with E mulsion-t R acking A pparatus. OPERA_ROC : a front-end chip for OPERA multi-anode photomultipliers. S. BONDIL 1 , K. BORER 2 , A. CAZES 1 , J.E. CAMPAGNE 1 , M. HESS 2 , C. de LA TAILLE 1 , A. LUCOTTE 1 ,G. MARTIN-CHASSARD 1 , L. RAUX 1 , J.P. REPELLIN 1

rafe
Download Presentation

OPERA_ROC : a front-end chip for OPERA multi-anode photomultipliers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. OscillationProject withEmulsion-tRackingApparatus OPERA_ROC : a front-end chip for OPERA multi-anode photomultipliers S. BONDIL1, K. BORER2, A. CAZES1, J.E. CAMPAGNE1, M. HESS2, C. de LA TAILLE1, A. LUCOTTE1,G. MARTIN-CHASSARD1, L. RAUX1, J.P. REPELLIN1 1LAL Orsay IN2P3-CNRS – Université Paris-Sud – B.P. 34 – 91898 Orsay cedex – France 2BERN University Berne- Switzerland http://www.lal.in2p3.fr/opera C. de La Taille IEEE 2003 Portland

  2. Outline • The Opera Target Tracker detector • OPERA_ROC : Readout chip design • Measured performance • Summary, schedule, variants C. de La Taille IEEE 2003 Portland

  3. 10 X0 • 2 Targets : • 1.8kT of 206 000 bricks • 2 x 31 walls • Tracker in plastic scintillators -> trigger + brick location + µId 8.3kg ~20 m 8m x 8m 2 Spectrometers: Dipole 1,6T +RPC & Precision Trackers OPERA layout at Gran Sasso • Goal : detection of nm nt oscillation through nt appearance A brick (ECC concept) 56 Pb sheets 1mm 57 Fuji emulsion films +1 Changeable Sheet C. de La Taille IEEE 2003 Portland

  4. 7m Target tracker • Scintillator walls for brick location Trigger + Brick Finding etrig > 99 %all channels eBF ~ 70%channel dependant C. de La Taille IEEE 2003 Portland

  5. OPERA_ROC : chip overview • Requirements • Variable gain 1-3 • Auto-trigger on 1/3 photoelectron (p.e.) • Multiplexed charge readout 0.1-100 p.e. • Low noise (< 0.1 p.e.), 1% linearity • Technology: AMS BiCMOS 0.8 m • Chip area : 10 mm2 • Package : QFP100 • 32 channels, 5V power supply • Power consumption : 185 mW C. de La Taille IEEE 2003 Portland

  6. OPERA_ROC : chip architecture • A common variable gain input amplifier • 2 branches : Charge and Time Charge output Trigger output • HISTORY : • chip for HPDs sept 2000 • V1 for MaPMT : spring 2001 • V2 differential 2002 • 3000 chips V3 produced spring 2003 C. de La Taille IEEE 2003 Portland

  7. Variable gain amplifier • Based on scaled current mirrors • 6 bits : 2, 1 , 1/2, 1/4, 1/8, 1/16 • Range : 0 – 3.8 • Linearity ~2% • DC bias = 20 µA • Zin ~ 4 kΩ • Needs a current conveyor upstram Measured gain correction Output waveforms C. de La Taille IEEE 2003 Portland

  8. iout iin Zin =1/gm - > 1/gm(1+A) Phase Zin = 60 Ω Input preamplifier design • Current conveyor • « Super common-base » configuration • Low input impedance : 50 – 100 Ω • Rin = 1/gm1gm2RC=VT2/IC1IC2RC + 50 Ω protection • Can be varied by adjusting IC1 • Low “Inductive term”(50 nH) with careful dimensioning • Large output impedance : ~500 kΩ • Unity current gain Simulated input impedance vs frequency Schematic of preamplifier To mirror Iout Q2 Rc Iin Q1 1 MHz 1 GHz C. de La Taille IEEE 2003 Portland

  9. Slow shaper 0.01 pe Fast shaper Input preamplifier performance ENC vs shaping time • Input impedance, speed and noise Input impedance vs bias current Operating point IC1 = 100 µA Rin=80Ω en = 2.5 nV/√Hz, in = 4 pA/√Hz Preamp output vs gain setting Preamp output vs input capacitance Cd = 0 -> 120 pF, tr 10-90% = 13-23 ns G = 1 -> 3 tr 10-90% = 20-10 ns C. de La Taille IEEE 2003 Portland

  10. 0.1p 3p 100k 10k 30k 30k Fast shaper design • Differential configuration • PMOS input pair. Dissipation : 1 mW • Simulated performance • Open loop gain Go=220 : ωc = 300 MHz • Feedback : • Rf = 100 kΩ ; Cf = 100 + 50 fF Simulated output waveforms 0.1-10 p.e. 10 ns 20 ns Simulated open loop gain vs frequency 1 MHz C. de La Taille IEEE 2003 Portland

  11. Gain 1 0.015pe Fast shaper performance Trigger efficiency vs threshold (“s-curves”) • Fast Shaper : • Gain: 2.5 V/pC ( 400 mV/p.e.) • Peaking time: tP ~ 15 ns • Noise RMS: ~ 1.8 mV (~ 0.005 p.e.) • Comparator : • Efficiency:  = 100 % down to 1/10 p.e. (goal: 1/3) • Threshold spread: ~  0.015 pe (pk to pk) • Timewalk : 14.5 ns • Dark rate (no HV) << 1 Hz 0.015pe 50% trigger dispersion 50% trigger vs channel # Gain 3 C. de La Taille IEEE 2003 Portland

  12. Charge readout channel Charge output input Trigger output C. de La Taille IEEE 2003 Portland

  13. Slow shaper design Simulated output waveforms 1-100 p.e. • Differential architecture • NPN centroid input pair. Pd ~ 500 µW • Simulated performance • Open loop gain Go = 720 : ωc = 300MHz • Sallen Key configuration • tp = 160 ns to reduce sensitivity to timing dispersion in scintillator (0.3 % for 10 ns) Simulated open loop gain vs frequency C. de La Taille IEEE 2003 Portland

  14. Charge readout performance • Slow Shaper : • Gain: 125 mV/pC (~ 20 mV/p.e.) • Dispersion : 1?% rms • Peaking time: tP ~ 160 ns ± 2 ns rms • Noise : 1.5 mV rms (0.1 p.e.) • Pedestal spread • ± 6 mV pk-pk ( ± 0.25 p.e.) • 2.5 mV rms Pedestal vs channel number Pedestal dispersion Peaking time uniformity C. de La Taille IEEE 2003 Portland

  15. Charge readout performance (2) • Dynamic range : 100-150 p.e. • ~3 V output swing ; 2.3 V linear range • Linearity : INL ~ 1% • Readout frequency : 5 MHz • 6.4 µs for the 32 channels • Crosstalk < 0.5% C. de La Taille IEEE 2003 Portland

  16. Spectrum with PMT • Measurement of PMT with Bern front-end board • 8 pixels illuminated, trigger set by the chip (at 0.15 p.e.) • « Single » photoelectron injection Single photoelectron readout and spectrum Pedestal : 8.6 mV rms 1.4 mV 1 p.e. -> 20 mV P/V ~ 2 C. de La Taille IEEE 2003 Portland

  17. Summary • OPERA_ROC final for OPERA experiment • Low input impedance variable gain preamp • Autotrigger at 1/10 photoelectron • Multiplexed charge output of 32 channels on 0.1 – 100 p.e. • Schedule • 3400 chips have been produced in july 03 in AMS 0.8 µm BiCMOS • Installation at Gran Sasso scheduled feb 04 – apr 05 • Cost : 67 k€ -> 60c / channel • Several variants • W-Si calorimeter, medical imaging… C. de La Taille IEEE 2003 Portland

  18. 1 channel OPA MUX out Gain=10 Amp OPA MUX out Gain=1 Variants ENC vs shaping time • High gain version : PACVG • Charge preamp input • Variable gain : Cf = 0.1 – 3 pF • Low noise : en = 1.3 nV/ @ ID=550µA • ENC = 500 e- + x e-/pF @ tp = 200 ns • Large dynamic range version : FLCPHY3 • W-Si prototype calorimeter for FLC • Low noise, variable feedback charge preamp • Dual gain shaper G1-G10 : dyn. Range = 13 bits • 18 channels, Pd = 10 mW/ch • 1000 chips to be produced end 03 http://www.lal.in2p3.fr/opera C. de La Taille IEEE 2003 Portland

  19. Position 2 N Position 1 Position 3 N x Dosimeter y x tube Variants (2) http://ireswww.in2p3.fr/ires/imaging • Medical imaging (D. Staub et al. IReS Strasbourg) • Dosimeter to avoid overexposure • Lattice of scintillating fibers • MaPMT 64ch Hamamatsu • Photon counting with OPERA_ROC chip C. de La Taille IEEE 2003 Portland

More Related