590 likes | 600 Views
This paper explores the use of wavefield extrapolation for migration and velocity analysis in complex geology, with a focus on complex illumination and distance-depth relationships. The objective is to improve imaging methods using wavefield extrapolation techniques.
E N D
Migration and velocity analysis by wavefield extrapolation Paul Sava paul.sava@stanford.edu
Complex geology distance depth paul.sava@stanford.edu
Complex illumination distance depth paul.sava@stanford.edu
Complex wavefields distance depth paul.sava@stanford.edu
Imaging methods overview paul.sava@stanford.edu
Focus of my thesis paul.sava@stanford.edu
Imaging by wavefield extrapolation distance distance depth paul.sava@stanford.edu
Outline Wave-equation migration velocity analysis Operator Image perturbation Example Riemannian wavefield extrapolation paul.sava@stanford.edu
The problem distance depth paul.sava@stanford.edu
Objective function distance WEMVA operator Image perturbation Slowness perturbation depth paul.sava@stanford.edu
Traveltime MVA t: traveltime s: slowness T: operator Wave-equation MVA I: image s: slowness L: operator Comparison of MVA methods paul.sava@stanford.edu
Outline Wave-equation migration velocity analysis Operator Image perturbation Example Riemannian wavefield extrapolation paul.sava@stanford.edu
Requirements WEMVA operator • Image-slowness relation • Wavefield extrapolation • Use the entire image • Linear operator • Cost-effective optimization paul.sava@stanford.edu
Downward continuation WEMVA operator z z+Dz Phase-shift operator paul.sava@stanford.edu
Downward continuation linearization WEMVA operator z z+Dz linear nonlinear paul.sava@stanford.edu
Scattering operator WEMVA operator Wavefield perturbation Slowness perturbation linear nonlinear paul.sava@stanford.edu
WE MVA operator WEMVA operator Image perturbation Slowness perturbation paul.sava@stanford.edu
WE MVA operator example WEMVA operator Slowness perturbation Slowness perturbation Background slowness Background wavefield Forward operator Adjoint operator Wavefield perturbation Wavefield perturbation paul.sava@stanford.edu
WE MVA operator example WEMVA operator Forward operator Adjoint operator paul.sava@stanford.edu
Traveltime MVA Ray paths Infinite frequency band Unstable for sharp contrasts Large shadow zones Wave-equation MVA Wave paths Finite frequency band Stable for sharp contrasts Small shadow zones Sensitivity kernels Sensitivity kernels paul.sava@stanford.edu
Wavepaths gallery Sensitivity kernels distance depth paul.sava@stanford.edu
Multiple wavepaths Sensitivity kernels distance depth paul.sava@stanford.edu
Frequency dependence Sensitivity kernels distance depth paul.sava@stanford.edu
Outline Wave-equation migration velocity analysis Operator Image perturbation Example Riemannian wavefield extrapolation paul.sava@stanford.edu
Requirements Image perturbation • Use image information • Fast and robust • Interpretive control • Consistent with the operator paul.sava@stanford.edu
Focusing information Image perturbation distance depth paul.sava@stanford.edu
Moveout information Image perturbation distance angle depth paul.sava@stanford.edu
Residual migration Image perturbation distance angle depth Residual migration operator paul.sava@stanford.edu
Residual migration linearization Image perturbation distance angle depth nonlinear linear paul.sava@stanford.edu
Linear residual migration operator Image perturbation Image perturbation Ratio perturbation nonlinear linear paul.sava@stanford.edu
WEMVA algorithm Construct an image perturbation Invert for a slowness perturbation paul.sava@stanford.edu
WEMVA flowchart Slowness Slowness perturbation Data Image Image perturbation paul.sava@stanford.edu
Outline Wave-equation migration velocity analysis Operator Image perturbation Example Riemannian wavefield extrapolation paul.sava@stanford.edu
Background slowness WEMVA example Slowness Slowness perturbation Data Image perturbation Image paul.sava@stanford.edu
Background image WEMVA example Slowness Slowness perturbation Data Image perturbation Image paul.sava@stanford.edu
Background image WEMVA example Slowness Slowness perturbation Data Image perturbation Image paul.sava@stanford.edu
Residual migration WEMVA example Slowness Slowness perturbation Data Image perturbation Image paul.sava@stanford.edu
Residual migration WEMVA example Slowness Slowness perturbation Data Image perturbation Image paul.sava@stanford.edu
Image perturbation WEMVA example Slowness Slowness perturbation Data Image perturbation Image paul.sava@stanford.edu
Slowness perturbation WEMVA example Slowness Slowness perturbation Data Image perturbation Image paul.sava@stanford.edu
Slowness update WEMVA example Slowness Slowness perturbation Data Image perturbation Image paul.sava@stanford.edu
Image update WEMVA example Slowness Slowness perturbation Data Image perturbation Image paul.sava@stanford.edu
Image quality WEMVA example Slowness Slowness perturbation Data Image perturbation Image paul.sava@stanford.edu
Outline Wave-equation migration velocity analysis Operator Image perturbation Example Riemannian wavefield extrapolation paul.sava@stanford.edu
Downward continuation Wavefield extrapolation distance depth paul.sava@stanford.edu
Downward continuation limitation Wavefield extrapolation distance depth paul.sava@stanford.edu
Downward continuation limitation Wavefield extrapolation distance depth paul.sava@stanford.edu
Riemannian wavefield extrapolation Wavefield extrapolation • One-way wavefield extrapolation • Generalized coordinate system • Based on wave propagation • Based on acquisition geometry • … • Imaging applications: • Overturning waves • Steep dips • … paul.sava@stanford.edu
Space-domain: velocity Wavefield extrapolation distance depth paul.sava@stanford.edu