1 / 51

Measurement of low pressures (vacuum)

Measurement of low pressures (vacuum). Vacuum tends to be used for pressures less than the atmospheric pressure, namely 1.013×10 5 Pa. A unit that is often used for such pressure is the torr ( 托) , this being the pressure equivalent to that given by a column of mercury of height 1 mm.

ramona
Download Presentation

Measurement of low pressures (vacuum)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Measurement of low pressures (vacuum) Vacuum tends to be used for pressures less than the atmospheric pressure, namely 1.013×105 Pa. A unit that is often used for such pressure is the torr (托), this being the pressure equivalent to that given by a column of mercury of height 1 mm. 1mmHg=133.322Pa=1 torr The lower the absolute pressure is, the higher the degree of vacuum is. cary_wang@sohu.com

  2. Vacuum regimes(真空划分)(10-12~105) • Low vacuum(粗真空) 105~3.3*103Pa • Medium vacuum(中真空) 3.3*103~100Pa • Medium vacuum(高真空) 100~10-3Pa • High vacuum(很高真空)10-3~10-6Pa • Ultrahigh(超高真空) 10-6~10-9Pa • Extreme ultrahigh (极高真空) <10-9Pa cary_wang@sohu.com

  3. Vacuum gages Absolute gages(基于力的作用原理):U- type,Bourdon type,diaphragm; Gas compression (基于压缩作用原理):Mcleod gage(麦氏真空计); Thermal conductivity (基于导热作用原理):Thermistor gage(电阻真空计),Thermocouple gage(热电偶真空计); Ionization gage(基于电离作用原理):Hot cathode ionization gages(热阴极式), Cold cathode ionization gages(冷阴极式) cary_wang@sohu.com

  4. (1) U-Type: Vacuum p p=pa-h, pa= 1at cary_wang@sohu.com

  5. (1) Elastic Vacuum弹性式真空表(粗真空) (2)Capacitance gage(电容式薄膜真空计)(10-2~105Pa) cary_wang@sohu.com

  6. (2) 压缩真空计 利用波义耳定律,将被测真空系统中一定的残余气体加以压缩,比较压缩前后体积、压力的变化,即能算出真空度。 玻义耳-马略特定律 它反映气体的体积随压强改变而改变的规律。对于一定质量的气体,在其温度保持不变时,它的压强和体积成反比;或者说,其压强P与它的体积V的乘积为一常量,即 PV=C(常数)(T不变时) 或 P1V1=P2V2=…=PnVn 实际气体只是在压强不太高、温度不太低的条件下才服从这一定律。 cary_wang@sohu.com

  7. The McLeod gauge is a pressure-measuring instrument and laboratory references standard used to establish gas pressures in the sub atmospheric range of 1mm Hg abs down to 0.1 Hg abs. One variation of this instrument is sketched next page in which the gauge is connected directly to the low-pressure source. At the equilibrium and measuring position in FIGURE b, the capillary pressure,p2,is related to the unknown gas pressure to be determined,p1,by: 8 cary_wang@sohu.com

  8. Where Letting be the specific weight of the mercury, the difference in pressures is related by: Such that the unknown gas pressure is just a function of y: In practice,a commercial McLeod gauge will have the capillary etched and calibrated to indicate pressure,p1,or equivalent head, ,directly. 9 cary_wang@sohu.com

  9. cary_wang@sohu.com

  10. Fig. The McLeod gage cary_wang@sohu.com

  11. pV1=(p+h)V2 其中p为真空系统中压强。 cary_wang@sohu.com 麦克劳真空计

  12. 2 Thermal conductivity(热导式真空计) 热导式真空计是根据在低压强下气体热导率与其压力之间关系制成的一种测量低真空的相对真空计。 原理:基于大气体压强低于某一定值时,气体的导热系数 K 与 P 成正比,        即:     K = b P            b:比例常数 cary_wang@sohu.com

  13. 热导真空计的工作原理是假设灯丝由导热损失的热量与加热电流I所产生的热量平衡时,灯丝温度不变。其平衡方程为.热导真空计的工作原理是假设灯丝由导热损失的热量与加热电流I所产生的热量平衡时,灯丝温度不变。其平衡方程为. 其中R为灯丝电阻;E1为气体分子迁移热量;E2为辐射迁移热量;E3为引出导线的迁移热量。若由于压力减小而使E1减小,则当I不变时,平衡方程将失去平衡,使灯丝温度变化。由此可根据灯丝温度来衡量压力的变化。所以热导真空计是通过测量灯丝温度来决定压力大小的。 cary_wang@sohu.com

  14. 根据测定气体热传导方法的不同,热导式真空计可分为电阻真空计和热电偶真空计两种。根据测定气体热传导方法的不同,热导式真空计可分为电阻真空计和热电偶真空计两种。 (1) Thermistor gage(电阻真空计) 它主要由电阻式规管和测量电路两部分组成。电阻式规管如图所示。在电阻规管内封装一只电阻温度系数较大的电阻丝,常用的有钨丝和铂丝。测量时规管与被测真空计系统相连。在较低的压力(小于13.3Pa)时,热电阻丝的电阻值取决于周围气体的压强。 cary_wang@sohu.com

  15. cary_wang@sohu.com

  16. Fig. Pirani thermal conductivity vacuum gage arrangement cary_wang@sohu.com

  17. (2) Thermocouple gage(热电偶真空计或相对真空计) 热偶真空计测量真空度的元件是热偶规管,其结构见图。它主要由玻璃壳、铂丝、热电偶构成。铂丝用于加热热电偶,通以恒定电流,其温度为100—200℃。热电偶是由镍铬—镍铝、或镍-康铜的丝制成的,其作用是在它的加热端与冷端(非加热端)温度不同时,会产生温差电动势。我们利用真空度不同,气体传热性不同,进而使温差电动势不同的特性来测量真空度的。 cary_wang@sohu.com

  18. 通过测量温差电动势,就间接地测得了真空度。热偶计只能测量低的真空度,真空度再高时,压强变化与气体热传导无关,故此真空计不能用于高真空测量。通过测量温差电动势,就间接地测得了真空度。热偶计只能测量低的真空度,真空度再高时,压强变化与气体热传导无关,故此真空计不能用于高真空测量。 cary_wang@sohu.com

  19. 3 ionization gages(电 离 真 空 计) (量程范围为:1×10-3~5×10-10托) 电离真空计诞生于1916年,由巴克利首先研制成功。以后不断地改进,使其测量范围达到1.3×10-2一1.3×10-5帕,变成了高真空区域广泛使用的真空计。这种真空计可以远距离测量,易于实现自动记录及控制,由于有炽热的灯丝,不适于测高氧气体。 cary_wang@sohu.com

  20. 电离真空计是通过在稀薄气体中引起电离然后利用离子电流测量压力。电离真空计是通过在稀薄气体中引起电离然后利用离子电流测量压力。 在气体中如果有动能足够大的电子与气体分子相碰撞,它可以从气体分子中击出一个或几个电子使气体分子成为正离子。把这种正离子收集到一个电极上使其产生离子电流,在稀薄气体中,它与气体压力有关。 cary_wang@sohu.com

  21. Ionization gages 热阴极电离真空计主要由圆筒式热阴极电离规管和测量电路两部分组成。 测量时规管与被测真空系统相连。通电后阴极加热所发射的电子在带正电的加速极作用下,以加速度运动,当电子的动能足够大,在飞向加速极的路途中与管内低压气体分子碰撞,即可使气体分子电离。电离产生的电子和正离子分别在加速极和收集极(带负电位)上形成电流Ie和离子流Ii。当压力足够低(低于10-1Pa)时,离子电流Ii与电子电流Ie之比正比于气体的压力p,即 cary_wang@sohu.com

  22. 式中,k为规管的灵敏度。由于用电离真空计测量压力时,电子电流保持不变,故式中,k为规管的灵敏度。由于用电离真空计测量压力时,电子电流保持不变,故 cary_wang@sohu.com

  23. 电离规管由阴极(灯丝)、螺旋形栅极(加速极)和圆筒形收集极构成。电离规管由阴极(灯丝)、螺旋形栅极(加速极)和圆筒形收集极构成。 cary_wang@sohu.com

  24. The heated cathode emits electrons, which are accelerated by the positively charged grid. The electrons move toward the grid and produce ionization of the gas molecules through collisions. The plate is maintained at a negative potential, so that the positive ions are collected there, producing the plate current . Fig.Schematic of ionization gage cary_wang@sohu.com

  25. cary_wang@sohu.com

  26. Example1 : For the situation shown in Figure 14, if the pipeline and manometer fluid densities are ρ = 1100kg/m3 (brine) and ρm = 13600kg/m3 respectively, x = 0.7m and the pressure at Y is – 30 kN/m2, find the difference in meniscus levels, h. Figure Example 1 Solution: Note that the right-hand meniscus is now lower than the left-hand meniscus. The pressure at Y is sub-atmospheric, i.e. a negative gauge pressure For the right-hand limb pX = 0 (atmospheric pressure) For the left-hand limb Equating the two expressions for pX: cary_wang@sohu.com

  27. 5.10 Sound Measurement • The sound wave propagates through air at a velocity of 330 m/s, dependent upon characteristics of medium • Sound field-anywhere where sound is present • Amplitude is measured in Pa • Microphones are sensitive to variations in air pressure and convert the pressure variations to electrical voltage, acosticalelectrical transducer cary_wang@sohu.com

  28. Principles of acoustics • Sound waves in gas or liquid • No shear forces → no transverse waves → purely longitudinal waves • Audible sound range 20 Hz – 20 kHz • Fully described by 3 variables • Pressure • Particle velocity • Density cary_wang@sohu.com

  29. Measurement of Sound • .00002 Pa lowest sound pressure human ear can hear 20µPa • Decibel scale devised to talk about these units dB. • Logarithmic scale (base 10)-quantifies the sound pressure level by taking the logarithm (base 10) of the ratio of two sound pressures and multiplies them by 20 cary_wang@sohu.com

  30. Measurement of Sound • Decibel scale calculates the sound level from a ratio of two sound pressures • (p1 and p2): 20 log10 (p1/p2) • Max= 200,000,000 µPa • Just audible =20 µPa • 200,000,000/20 for p1/p2=10,000,000/1 • Log10 of 10,000,000 (10)=7 • Therefore 20x7=140 dB, max tolerable cary_wang@sohu.com

  31. Measurement of Sound • Just audible 20 µPa, p1/p2 is 20/20, or 1 • Log 1=0, 20x0=0dB • Absolute measure using a reference sound pressure level (SPL) scale is 2x10-5 Pa or 20 µPa • SPL in dB=20 log [p1/(2x10-5)] Pa • 2x10-5/ 2x10-5=1, log 1=0, 20x1=0 dB • 0dB does not mean absence of sound, rather it corresponds to SPL at 2x10-5 Pa cary_wang@sohu.com

  32. dB summary • Decibels (dB) are logarithmic units of pressure or intensity that are used to measure the amplitude of a sound. • It is a ratio scale use to describe the large dynamic range of the auditory system. • A decibel is a relative measure, not an absolute measure (dB expressed relative to 20 micropascals expressed in dB SPL) cary_wang@sohu.com

  33. Measurement of Sound • Sound level meters-use microphones to change sound pressure variations into voltage variations • The RMS amplitude of these voltage variations are determine electronically and displayed in SPL cary_wang@sohu.com

  34. Measurement of sound pressure filtered by • frequency (A-weighting) • time-domain (RMS) • Mimics response of human ear to noise cary_wang@sohu.com

  35. cary_wang@sohu.com

  36. Human hearing frequency response A-weighting curve For subjective responses in special cases there are B-, C- and D-weighting curves • very high or low level • special noise, e.g., of aircraft cary_wang@sohu.com

  37. Sound level measurement • IEC International Standard 651 ”Sound Level Meters” • Tolerances per frequency band defined for 4 classes of accuracy • Type 0: precision laboratory use • Type 1: general purpose • Type 2: low price • Type 3: not used in practice (too wide tolerances) cary_wang@sohu.com

  38. When sound reflects of a wall, the reflected wave may encounter other waves from the source and destructive (or constructive) interference may occur. cary_wang@sohu.com

  39. Any environment that contains sound is a sound field • A sound field without any reflections is called a free field-almost impossible to obtain • Anechoic room-environment in which every attempt is made to reduce the amount of reflection using materials that absorb rather than reflect sound cary_wang@sohu.com

  40. Free field acoustics • Sound propagates to all directions without diffraction, reflection or absorption • Spherical waves • In principle, infinite, empty space without reflections • In practice, anechoic chamber, with near 100% absorptive walls cary_wang@sohu.com

  41. Free field microphone • Intended to measure the sound pressure as it existed before the microphone was introduced • Microphone pointed to source • Microphone tip causes an increase in sound pressure • Taken care of by internal acoustical damping to achieve flat frequency response cary_wang@sohu.com

  42. Dynamic Characteristics ofGas Filled Systems The straight tube can oscillate like an organ pipe with f = C/4L(2n-1) The cavity vibrates like a helmholtz resonator with cary_wang@sohu.com

  43. Pressure Instrument Calibration Static-- Performed against dead weight tester for >5 psi For lower ranges, calibrate against a manometer. Dynamic--Most pressure sensors will behave as a system of at least order 1. As such, it is necessary to determine parameters like t or wn and z. As you know, this requires a step function input. How do you make pressure step suddenly? cary_wang@sohu.com

  44. Pressure Instrument Dynamic Calibration 压力检测系统的动态校准首先需要解决标准动态压力信号源问题。 产生标准动态压力信号的装置有多种形式,根据其所提供的标准动态压力信号可分为两类:一类是稳态周期性压力信号源,如机械正弦压力发生器、凸轮控制喷嘴、电磁谐振器等;另一类是非稳态压力信号源,如激波管、闭式爆炸器、快速卸载阀及落锤液压动校装置等。 cary_wang@sohu.com

  45. 激波管(Shock tube)是测定压力传感器频率响应特性的最常用的方便而简单的设备。目前,激波管已成为国际计量部门用来校准压力传感器动态性能的标准装置。 • 激波管法校准压力传感器动态特性系统包括激波管、气源、测量和记录部分。 A1,A2,A3为压电式压力传感器,装在激波管的侧面,其中A1和A2特性相同,用于测量激波速度;Ax和Ay为被校压力传感器;B1,B2,B3为电荷放大器。 • 激波管校准系统图 cary_wang@sohu.com

  46. 5.11 Pressure Instrument Application 压力检测仪表的正确选择、安装和校准是保证其在生产过程中发挥应有作用及保证测量结果安全可靠的重要环节。 cary_wang@sohu.com

  47. 压力仪表的选择 压力仪表的选择应本着经济合理的原则综合考虑仪表类型、测量范围和精度等方面。 仪表类型应根据被测介质情况、现场环境及生产过程对仪表的要求,如信号是否需要远传、控制、记录或报警等,结合各类压力仪表的特点选择。 仪表的量程要根据被测压力的大小及其在测量过程中变化的情况来选取。在测量稳定压力、脉动压力和高压时,最大工作压力应分别不超过仪表测量上限值的2/3、1/2和3/5;被测压力的最小值不应低于仪表测量上限值的1/3,以保证仪表的线性和测量结果的准确性。具体选择应在国家规定的标准系列中选取。 仪表的精度应根据工艺生产的要求在规定的精度等级中选择确定。所选精度等级应小于或至少等于工艺要求的仪表允许最大引用误差。 cary_wang@sohu.com

  48. Pressure Instrument Application (cont.) 压力测量系统(包括测取压力的取压口、传递压力的引压管路和测量仪表) 安装的正确与否直接影响测量结果的准确性。应根据具体被测介质、管路和环境条件,选取适当的取压口位置、正确安装引压管路和测量仪表。 cary_wang@sohu.com

  49. 仪表型式 常用测量范围(Pa) 精度等级 用途与特点 液柱式压力计 U形管压力计 0~105或压差、负压 高 基准器、标准器、工程测量仪表 单管压力计 0~105或压差、负压 高 基准器、标准器、工程测量仪表 斜管压力计 0~2×103或压差、负压 高 基准器、标准器、工程测量仪表 弹性压力计 弹簧管压力计 0~109 较高 工程测量仪表、精密测量仪表 膜片式压力计 0~2×106或压差、负压 一般 工程测量仪表、精密测量仪表 膜盒式压力计 0~4×104或压差、负压 一般 工程测量仪表、精密测量仪表 波纹管压力计 0~4×156或压差、负压 一般 工程测量仪表、精密测量仪表 Pressure Instrument Application (cont.) 表:一些常用压力仪表的性能和用途: cary_wang@sohu.com

  50. 活塞式压力计 0~2.5×108或负压 很高 基准器、标准器 电位计式压力传感器 0~6×107 一般 工程测量仪表 电容式压力传感器 0~107或压差 较高 工程测量仪表 电感式压力传感器 0~6×107 较高 工程测量仪表 霍尔式压力传感器 0~6×107 一般 工程测量仪表 振频式压力传感器 0~107或压差、负压 较高 工程测量仪表 应变式压力传感器 0~108或压差、负压 较高 工程测量仪表 压电式压力传感器 0~107或压差、负压 较高 工程测量仪表 Pressure Instrument Application (cont.) 表:一些常用压力仪表的性能和用途(续): cary_wang@sohu.com

More Related