1 / 18

Algebra 1

Algebra 1. Ch 4.3 Quick Graphs Using Intercepts. Objective . Students will graph a linear equation using the x and y-intercepts. Before we begin…. In the previous lesson we graphed a linear equation by creating a table of values… That is not the only way to graph a linear equation…

ray-ball
Download Presentation

Algebra 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Algebra 1 Ch 4.3 Quick Graphs Using Intercepts

  2. Objective • Students will graph a linear equation using the x and y-intercepts

  3. Before we begin… • In the previous lesson we graphed a linear equation by creating a table of values… • That is not the only way to graph a linear equation… • In this lesson we will look at graphing a linear equation using the x and y-intercepts…that is where the line crosses the x and y-axes

  4. X-Intercepts • The x-intercept is the point at which the linear equation crosses the x-axis. • x-intercepts can be written as ordered pairs and may look like this: (2,0), (3,0), (-5, 0), (-8, 0) • Notice that the y-value in the ordered pair is always zero (0)

  5. Finding the x-intercept • It’s important to note that the y-value is always zero because in order to find the x-intercept you will substitute zero (0) for y in a linear equation, and solve algebraically, to find the value of x. • Let’s look at an example…

  6. Example #1 2x + 3y = 6 2x + 3(0) = 6 To find the x-intercept substitute zero for y and solve algebraically. 2x + 0 = 6 2 2 x = 3 The solution x=3 represents where the linear equation will cross the x-axis. The solution can be written as the ordered pair (3, 0)

  7. Y-Intercepts • The y-intercept is the point at which a linear equation crosses the y-axis. • y-intercepts can be written as ordered pairs that may look like this: (0, -2), (0, 4), (0, 2), (0, -1) • Notice that in the ordered pairs the x-value is always zero (0)

  8. Finding the y-Intercepts • It’s important to note that the x-value is always zero (0) because in order to find the y-intercept you substitute zero for x and solve the equation algebraically. • Let’s continue with example 1 and find the y-intercept

  9. Example #1 (continued) 2x + 3y = 6 2(0) + 3y = 6 To find the y-intercept substitute zero for x and solve algebraically. 0 + 3y = 6 3 3 y = 2 The solution y=2 represents where the linear equation will cross the y-axis. The solution can be written as the ordered pair (0, 2)

  10. Example #1 (continued) • Now that we have found the x and y-intercepts for the equation 2x + 3y = 6 we can plot the graph of the equation using the x and y-intercepts • To plot the graph mark the point at which the line crosses the x and y-axes and draw a line between the points • Let’s see what that looks like…

  11. y x Example #1 (continued) 2x + 3y = 6 x-intercept =3 y-intercept =2 (0,2) (3,0) 2x + 3y = 6

  12. Comments • Often times students get confused when working with x and y-intercepts… • They try to substitute 0 for the intercept they are looking for….this is incorrect! • If you are looking for x substitute 0 for y. • If you are looking for y substitute 0 for x

  13. Comments • On the next couple of slides are some practice problems…The answers are on the last slide… • Do the practice and then check your answers…If you do not get the same answer you must question what you did…go back and problem solve to find the error… • If you cannot find the error bring your work to me and I will help…

  14. Your Turn • Find the x-intercept • x + 3y = 5 • 3x + 4y = 12 • -7x – 3y = 42 • Find the y-intercept • y = -2x + 5 • y = 7x – 15 • 3x + 12y = -84

  15. Your Turn • Find the x and y-intercepts, graph the equation, label the points where the line crosses the axes. • y = x + 2 • y = -6 + 3x • -4x + 3y = 24 • 2x + 9y = -36

  16. x = 5 x = 4 x = -6 y = 5 y = -15 y = -7 Your graph should have the following as the x and y-intercepts x = -2 y = 2 x = 2 y = -6 x = -6 y = 8 x = -18 y = -4 Your Turn Solutions

  17. Summary • A key tool in making learning effective is being able to summarize what you learned in a lesson in your own words… • In this lesson we talked about Quick graphs using intercepts. Therefore, in your own words summarize this lesson…be sure to include key concepts that the lesson covered as well as any points that are still not clear to you… • I will give you credit for doing this lesson…please see the next slide…

  18. Credit • I will add 25 points as an assignment grade for you working on this lesson… • To receive the full 25 points you must do the following: • Have your name, date and period as well a lesson number as a heading. • Do each of the your turn problems showing all work • Have a 1 paragraph summary of the lesson in your own words • Please be advised – I will not give any credit for work submitted: • Without a complete heading • Without showing work for the your turn problems • Without a summary in your own words…

More Related