1 / 81

Mengenal Sifat Material (1) oleh: Sudaryatno Sudirham

Open Course. Mengenal Sifat Material (1) oleh: Sudaryatno Sudirham. Cakupan Bahasan. Perkembangan Konsep Atom Elektron Sebagai Partikel dan Gelombang Persamaan Gelombang Schrödinger Aplikasi Persamaan Schrödinger Konfigurasi Elektron Dalam Atom Ikatan Atom dan Susunan Atom. BAB 1.

ray
Download Presentation

Mengenal Sifat Material (1) oleh: Sudaryatno Sudirham

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Open Course Mengenal Sifat Material (1) oleh: Sudaryatno Sudirham

  2. Cakupan Bahasan • Perkembangan Konsep Atom • Elektron Sebagai Partikel dan Gelombang • Persamaan Gelombang Schrödinger • Aplikasi Persamaan Schrödinger • Konfigurasi Elektron Dalam Atom • Ikatan Atom dan Susunan Atom

  3. BAB 1 Pendahuluan

  4. Perkembangan Konsep Atom Perkembangan pengetahuan tentang material dilandasi oleh konsep atom yang tumbuh semakin rumit dibandingkan dengan konsep awalnya yang sangat sederhana.

  5. Perkembangan Konsep Atom 1803 Dalton berat atom Emaks metal 1 metal 2 metal 3 f 0 1 2 3  460 SMDemocritus  elektron atom bukan partikel terkecil 1897 Thomson Akhir abad 19Persoalan radiasi benda hitam 1880Kirchhoff Eosc = h  f h = 6,626  1034 joule-sec 1901 MaxPlanck 1905Albert Einstein efek photolistrik Dijelaskan: gelombang cahaya seperti partikel; disebut photon Inti atom (+) dikelilingi oleh elektron (-) 1906-1908Rutherford

  6. Perkembangan Konsep Atom 5 4 3 PASCHEN tingkat energi 2 BALMER 1 LYMAN 1913 Niels Bohr photon dari sinar-X mengalami perubahan momentum saat berbenturan dengan elektron valensi. 1923Compton partikel sub-atom dapat dipandang sebagai gelombang 1924Louis de Broglie 1926 Erwin Schrödinger mekanika kuantum 1927 Davisson dan Germer berkas elektron didefraksi oleh sebuah kristal 1927 Heisenberg uncertainty Principle 1930 Born intensitas gelombang

  7. Model Atom Bohr

  8. Perkembangan Konsep Atom, Model Atom Bohr Model atom Bohr dikemukakan dengan menggunakan pendekatan mekanika klasik. Model atom Bohr berbasis pada model yang diberikan oleh Rutherford: Partikel bermuatan positif terkonsentrasi di inti atom, dan elektron berada di sekeliling inti atom. Perbedaan penting antara kedua model atom: Model atom Rutherford: elektron berada di sekeliling inti atom dengan cara yang tidak menentu Model atom Bohr: elektron-elektron berada pada lingkaran-lingkaran orbit yang diskrit;energi elektron adalah diskrit.

  9. Perkembangan Konsep Atom, Model Atom Bohr r Fc Ze Gagasan Bohr : orbit elektron adalah diskrit; ada hubungan linier antara energi dan frekuensi seperti halnya apa yang dikemukakan oleh Planck dan Einstein

  10. Perkembangan Konsep Atom, Model Atom Bohr Dalam model atom Bohr : energi dan momentum sudutelektron dalam orbitterkuantisasi Setiap orbit ditandai dengan dua macam bilangan kuantum: bilangan kuantum prinsipal,n bilangan kuantum sekunder,l

  11. Perkembangan Konsep Atom, Model Atom Bohr Jari-Jari Atom Bohr Untuk atom hidrogen padaground state, di mana n = 1 dan Z= 1, maka r = 0,528 Å

  12. Perkembangan Konsep Atom, Model Atom Bohr bilangan kuantum prinsipal n : 1 2 3 4 5 1,51 energi total [ eV ]  1,89 eV 3,4  10,2 eV 13,6 ground state Tingkat-Tingkat Energi Atom Hidrogen

  13. Perkembangan Konsep Atom, Model Atom Bohr 5 4 Tingkat Energi 3 deret Paschen 2 deret Balmer 1 deret Lyman Spektrum Atom Hidrogen

  14. BAB 2 Elektron Sebagai Gelombang

  15. Elektron Sebagai Gelombang Gelombang Tunggal bilangan gelombang Kecepatan rambat gelombang dicari dengan melihat perubahan posisi amplitudo Kecepatan ini disebut kecepatan fasa

  16. Elektron Sebagai Gelombang Paket Gelombang Paket gelombang adalah gelombang komposit yang merupakan jumlah dari n gelombang sinus dengank0 , 0, A0, berturut-turut adalah nilai tengah dari bilangan gelombang, frekuensi dan amplitudo

  17. Elektron Sebagai Gelombang Bilangan gelombang: k variasik sempit Perbedaan nilai k antara gelombang-gelombang yang membentuk paket gelombang tersebut sangat kecil  dianggap kontinyu demikian juga selang k sempit sehingga An / A0 ≈ 1.Dengan demikian maka Pada suatu t tertentu, misalnya pada t = 0 persamaan bentuk amplitudo gelombang menjadi Karena perubahan nilai k dianggap kontinyu maka

  18. Elektron Sebagai Gelombang x selubung Persamaan gelombang Persamaan gelombang komposit untuk t = 0 menjadi Persamaan ini menunjukkan bahwa amplitudo gelombang komposit ini terselubung oleh fungsi lebar paket gelombang

  19. Elektron Sebagai Gelombang Kecepatan Gelombang kecepatan fasa: kecepatan group:Amplitudo gelombang akan mempunyai bentuk yang sama bilaS(x,t) = konstan. Hal ini terjadi jika ()t = (k)x untuk setiap n Kecepatan group ini merupakan kecepatan rambat paket gelombang

  20. Elektron Sebagai Gelombang konstanta Planck momentum elektron Panjang gelombang de Broglie, Momentum, Kecepatan Einstein : energi photon de Broglie: energi elektron Panjang gelombang Momentum Kecepatan

  21. Elektron Sebagai Gelombang Elektron Sebagai Partikel dan Elektron Sebagai Gelombang Elektron dapat dipandang sebagai gelombang tidaklah berarti bahwa elektron adalah gelombang; akan tetapi kita dapat mempelajari gerakan elektron dengan menggunakan persamaan diferensial yang sama bentuknya dengan persamaan diferensial untuk gelombang. Elektron sebagai partikel: massa tertentu, m. Elektron sebagai gelombang massa nol, tetapi  = h/mve. Elektron sebagai partikel: Etotal= Ep+ Ek= Ep+ mve2/2. Elektron sebagai gelombang: Etotal = hf = ħ. Elektron sebagai partikel: p = mve2 Elektron sebagai gelombang: p = ħk = h/. Dalam memandang elektron sebagai gelombang, kita tidak dapat menentukan momentum dan posisi elektron secara simultan dengan masing-masing mempunyai tingkat ketelitian yang kita inginkan secara bebas. Kita dibatasi oleh prinsip ketidakpastian Heisenberg: px  h. Demikian pula halnya dengan energi dan waktu: Et  h .

  22. BAB 3 Persamaan Schrodinger

  23. PersamaanSchrödinger ¶ ¶ H ( p , x ) V ( x ) - = - ¶ ¶ x x Elektron sebagai partikel memiliki energi = energi kinetik + energi potensial E merupakan fungsi p dan x H = Hamiltonian Turunan H(p,x)terhadap p memberikan turunan x terhadap t. Turunan H(p,x) terhadap x memberikan turunan p terhadap t.

  24. PersamaanSchrödinger Gelombang : u merupakan fungsi t dan x Turunan u terhadap t: Turunan u terhadap x: Operator energi Operator momentum

  25. PersamaanSchrödinger Hamiltonian: Operator: Jika H(p,x) dan E dioperasikan pada fungsi gelombang  maka diperoleh Inilah persamaan Schrödinger satu dimensi tiga dimensi

  26. PersamaanSchrödinger Persamaan Schrödinger Bebas Waktu Aplikasi persamaan Schrödinger dalam banyak hal hanya berkaitan dengan energi potensial, yaitu besaran yang hanya merupakan fungsi posisi Oleh karena itu jika persamaan tersebut diupayakan tidak merupakan fungsi yang bebas waktu agar penanganannya menjadi lebih sederhana Jika kita nyatakan: maka dapat diperoleh sehingga Satu dimensi Tiga dimensi

  27. PersamaanSchrödinger Fungsi Gelombang Persamaan Schrödinger adalah persamaan diferensial parsial dengan  adalah fungsi gelombang dengan pengertian bahwa adalah probabilitas keberadaan elektron pada waktu tertentu dalam volume dx dy dz di sekitar titik (x, y, z) Jadi persamaan Schrödinger tidak menentukan posisi elektron melainkan memberikan probabilitas bahwa ia akan ditemukan di sekitar posisi tertentu. Kita juga tidak dapat mengatakan secara pasti bagaimana elektron bergerak sebagai fungsi waktu karena posisi dan momentum elektron dibatasi oleh prinsip ketidakpastian Heisenberg Contoh kasus satu dimensi pada suatu t = 0

  28. PersamaanSchrödinger Persyaratan Fungsi Gelombang Elektron sebagai suatu yang nyata harus ada di suatu tempat. Oleh karena itu fungsi gelombang (untuk satu dimensi) harus memenuhi: Fungsi gelombang , harus kontinyu sebab jika terjadi ketidak-kontinyuan hal itu dapat ditafsirkan sebagai rusaknya elektron, suatu hal yang tidak dapat diterima. Turunan fungsi gelombang terhadap posisi,juga harus kontinyu, karena turunan fungsi gelombang terhadap posisi terkait dengan momentum elektron Oleh karena itu persyaratan ini dapat diartikan sebagai persayaratan kekontinyuan momentum. Fungsi gelombang harus bernilai tunggal dan terbatas sebab jika tidak akan berarti ada lebih dari satu kemungkinan keberadaan elektron. Fungsi gelombang tidak boleh sama dengan nol di semua posisi sebab kemungkinan keberadaan elektron haruslah nyata, betapapun kecilnya.

  29. BAB 4 Aplikasi Persamaan Schrodinger

  30. Aplikasi Persamaan Schrödinger Im Re Elektron Bebas Elektron bebas adalah elektron yang tidak mendapat pengaruh medan listrik sehingga energi potensialnya nol, V(x) = 0 solusi harus berlaku untuk semua x Persamaan gelombang elektron bebas Energi elektron bebas

  31. Aplikasi Persamaan Schrödinger I II III V= V=0 V= 1 2 3 0 x L Fungsi gelombang Elektron di Sumur Potensial yang Dalam Daerah I dan daerah III adalah daerah-daerah dengan V = , daerah II, 0 < x < L, V = 0 Elektron yang berada di daerah II terjebak dalam “sumur potensial” Sumur potensial ini dalam karena di daerah I dan II V =  Energi elektron Probabilitas ditemukannya elektron

  32. Aplikasi Persamaan Schrödinger Fungsi gelombang *  Probabilitas ditemukan elektron 0 x L a). n = 1 * * Energi elektron   0 L 0 L c). n = 3 b).n = 2 Fungsi gelombang, probabilitas ditemukannya elektron, dan energi elektron, tergantung dari lebar sumur, L

  33. Aplikasi Persamaan Schrödinger n = 3 V n = 2 V’ n = 1 0 L 0 L’ Pengaruh lebar sumur pada tingkat-tingkat energi Makin lebar sumur potensial, makin kecil perbedaan antara tingkat-tingkat energi

  34. Aplikasi Persamaan Schrödinger V a * * * * E E E 0 L 0 L 0 L 0 L a) b) c) d) Elektron di Sumur Potensial yang Dangkal Probabilitas keberadaan elektron tergantung dari kedalaman sumur Makin dangkal sumur, kemungkinan keberadaan elektron di luar sumur makin besar Jika diding sumur tipis, elektron bisa “menembus” dinding potensial

  35. Aplikasi Persamaan Schrödinger z Lz y Ly Lx x Persamaan ini adalah persamaan satu dimensi yang memberikan energi elektron: Sumur tiga dimensi Arah sumbu-x Untuk tiga dimensi diperoleh: Tiga nilai energi sesuai arah sumbu

  36. BAB 5 Konfigurasi Elektron Dalam Atom

  37. Persamaan Schrödinger dalam Koordinat Bola

  38. Persamaan Schrödinger, Dalam Koordinat Bola z elektron  r inti atom y  x Persamaan Schrödinger dalam Koordinat Bola inti atom berimpit dengan titik awal koordinat persamaan Schrödinger dalam koordinat bola Jika kita nyatakan: kita peroleh persamaan yang berbentuk mengandung r tidak mengandung r salah satu kondisi yang akan memenuhi persamaan ini adalah jika keduanya = 0

  39. Persamaan Schrödinger, Dalam Koordinat Bola fungsi gelombang R hanya merupakan fungsi r simetri bola kalikan dengan kalikan dengan dan kelompokkan suku-suku yang berkoefisien konstan Ini harus berlaku untuk semua nilai r Persamaan yang mengandung r saja Salah satu kemungkinan:

  40. Persamaan Schrödinger, Dalam Koordinat Bola salah satu solusi: Inilah nilai E yang harus dipenuhi agar R1 merupakan solusi dari kedua persamaan Energi elektron pada status ini diperoleh dengan masukkan nilai-nilai e, m, dan h Probabilitas keberadaan elektron dapat dicari dengan menghitung probabilitas keberadaan elektron dalam suatu “volume dinding” bola yang mempunyai jari-jari r dan tebal dinding r.

  41. Persamaan Schrödinger, Dalam Koordinat Bola Pe Pe1 r0 r [Å] probabilitas maksimum ada di sekitar suatu nilai r0 sedangkan di luar r0 probabilitas ditemukannya elektron dengan cepat menurun keberadaan elektron terkonsentrasi di sekitar jari-jari r0 saja Inilah struktur atom hidrogen yang memiliki hanya satu elektron di sekitar inti atomnya dan inilah yang disebut status dasar atau ground state

  42. Persamaan Schrödinger, Dalam Koordinat Bola R R1 R2 R3 * * * r[Å]    0 x L 0 L 0 L c). n = 3 b).n = 2 a). n = 1 Adakah Solusi Yang Lain? Kita ingat: Energi Elektron terkait jumlah titik simpul fungsi gelombang solusi yang lain: bertitik simpul dua bertitik simpul tiga Solusi secara umum: polinom

  43. Persamaan Schrödinger, Dalam Koordinat Bola Pe Pe1 Pe2 Pe3 r[Å] bilangan kuantum prinsipal Tingkat-Tingkat Energi Atom Hidrogen n 1 2 3 4 5 energi total [ eV ] 1,51  1,89 eV 3,4  10,2 eV 13,6 ground state probabilitas keberadaan elektron

  44. Persamaan Schrödinger, Dalam Koordinat Bola Momentum Sudut Momentum sudut juga terkuantisasi bilangan bulat positif Momentum sudut ditentukan oleh dua macam bilangan bulat: l : menentukanbesar momentum sudut, dan ml : menentukan komponen zatau arah momentum sudut Nilai l dan ml yang mungkin : dst.

  45. Persamaan Schrödinger, Dalam Koordinat Bola l disebut bilangan kuantum momentum sudut, atau bilangan kuantum azimuthal mladalah bilangan kuantum magnetik

  46. Persamaan Schrödinger, Dalam Koordinat Bola bilangan kuantum utama n : 1 2 3 4 5 3s, 3p, 3d 1,51 2s, 2p 3,4 energi total [ eV ] 0 1 2 3 4 5 1s 13,6 Bohr lebih cermat Bilangan Kuantum • Ada tiga bilangan kuantum. • bilangan kuantum utama, n, yang menentukan tingkat energi; • bilangan kuantum momentum sudut, atau bilangan kuantum azimuthal, l; • bilangan kuantum magnetik, ml . (4)Spin Elektron:  ½ dikemukakan oleh Uhlenbeck

  47. Persamaan Schrödinger dalam Koordinat Bola Konfigurasi Elektron Dalam Atom Netral Kandungan elektron setiap tingkat energi

  48. Persamaan Schrödinger dalam Koordinat Bola z y x 1s inti atom 2s inti atom Orbital

  49. Persamaan Schrödinger dalam Koordinat Bola Penulisan konfigurasi elektron unsur-unsur H: 1s1; He: 1s2 Li: 1s2 2s1; Be: 1s2 2s2; B: 1s2 2s2 2p1; C: 1s2 2s2 2p2; N: 1s2 2s2 2p3; O: 1s2 2s2 2p4; F: 1s2 2s2 2p5; Ne: 1s2 2s2 2p6.........dst

More Related