500 likes | 516 Views
Addressing global environmental challenges, this initiative focuses on green energy mobile charger standardization for sustainability and reduced energy consumption, integrating solar technology for universal mobile charging solutions.
E N D
Global Green Energy Mobile Charger Professor G.N.Pandey Indian Institute of Information Technology Allahabad
INDEX • Introduction • Present Status • Standardization • Benefits • Conclusion
INTRODUCTION • From both an individual and organizational perspective the global environmental issues we all face are here to stay for the foreseeable future. • Arguably the most commonly known and widely reported environmental concern nowadays is global climate change/global warming. For many of us in the Information Communication & Technology (ICT) Industry, the environmental spotlight is shining directly at us, as the consumption of energy derived from traditional fossil fuels becomes an international concern. • It is widely cited in Information Technology (IT) circles that the ICT industry is responsible for approximately two per cent of world-wide carbon emissions, which is roughly the equivalent to the carbon emissions attributed to the aviation industry
Present Statistics • Power Consumption in ICT=2% • 54 of the total import is Petroleum causing environmental degradation and foreign exchange drain • Obsolesce in ICT - E-Waste
Necessity of Green ICT "Green ICT" fall into one of two broad categories. • Those intended to deal with global warming by either reducing greenhouse gas emissions or in the alternative its potential harmful effects on the planet. • Those technologies associated with establishing economic "sustainable growth" which includes recycling, resource reduction and many aspects of the biosciences
Daylight Potentiality Continent Wise Geographic Conservation Stewardship Program (CSP) Area
Daylight Availability Continent Wise – Global potential daylight average per year, Q = 42.1 moles par meter square
Sunlight average per Hour Timing http://astro.unl.edu/classaction/animations/coordsmotion/daylighthoursexplorer.html
Solar Energy Distribution over India Availability of solar energy in India is almost 320 – 326 day/year.
Types of Mobile Charger • No. of charger available in market: • Nokia – 3 • Samsung – 2 • LG – 3 • Motorola – 3 • Sony Eriksson – 3 • Acer – 2 • Black Berry – 1
Standard of Integrated Mobile Port Global Green Mobile Charger uniformity of above connectivity is essential. http://www.geeksailor.com/solve-cyberpower-usb-port-hubs-issues/
Present Status of Mobile Charger For Global Green Mobile Charger this arrangement will not be required.
Types of Cell Phone Battery • Nickel Cadmium (NiCd) • Nickel Metal Hydride (NiMH) • Lithium Ion (Li-ion) • Lithium Ion Polymer (Li-Po) • Nickel Metal Hydrid (NiMH) Batteries Cell phone battery could also be standardized so that battery is replicable.
Different Standard of cell phone battery http://www.rechargeable-battery-review.com/faqs--information/consumer-battery-faqs/rechargeable-battery-standards.html
As Photovoltaic Mobile, Cell Phone Battery and Laptop Recharger
Technology • It works on principle of solar energy is converted into electrical energy • Photovoltaic solar panels are composed mainly of silicon. Silicon is used because it naturally releases electrons (electrical energy) when hit with a photon (light source). • photovoltaic solar panel consist of a clear protective top layer, two layers of specially treated silicon with collecting circuitry attached to the top layer , and a tough polymer backing layer. • These two layers are separated by an electrically charged junction, which allows electrons to flow from back to front • When light strikes the PV panel, some of the photons are absorbed by the silicon layers. The photons cause electrons to be released from the silicon crystal.
Tools • Solar Panel • Solar Regulator • DC – battery storage • Inverter (DC to AC Conversion) • Mobile/Laptop
Benefit from the project for Mobile Energy saves: - In India, there are 750 million mobile users and in general, every mobile Charges for at least 20 minutes and each mobile charger stores on an average 4.4 W-H or 15840 Joule or 15.8 kJ. It means an energy= 4.4*750,000,000=3,300,000,000=3.3GW-H which mean on an average, daily 3.3 GW-H is Daily consumed for this purpose only and this all can be reduced by using our solar charger. All This energy Generally comes from conventional Sources which contributes to Environmental pollution. So, total power consumption in a whole year 3.3*365=1204.5 GW-H. More facilitated: -Any where the mobile can be recharged by solar power.
Benefit for Mobile in Worldwide Energy saves: - In world, there are 5 billionmobile users and in general, every mobile Charges for at least 20 minutes and each mobile charger stores on an average 4.4 W-H or 15840 Joule or 15.8 kJ. It means an energy= 4.4*5,000,000,000=22,000,000,000=22 GW-H which mean on an average, daily GW-H is Daily consumed for this purpose only and this all can be reduced by using our solar charger. All This energy Generally comes from conventional Sources which contributes to Environmental pollution. So, total power consumption in a whole year 22*365=8030 GW-H CO2 Emission controlled: - 7557 Giga gram CO2 extracting stopped per day. And it Reduced 29.63% CO2 emission per year. Help to reduce the responsibility of the CO2 from the Global warming effect: - 49.08% per year. Help to decrease the warming temperature of the atmosphere: - 49.06% per year.
Benefit from the project for Laptop Energy saves: - In India, there are 2.5 million laptop users and in general, every laptop consumes all total average 80 W-H in 1 hour. It means the amount of total power consumed while working with the laptop at least 8 hours in a day, E = 80*8*2500000 = 1,600,000,000 W-H which mean on an average, daily 1.6 Giga W-H energy is Daily consumed for this purpose only and in one year the total power consumption in India only, X = 1.6 * 365 = 584 Giga W-H. CO2 Emission controlled: - 0.1 ton extracting from one laptop in each year. So, the total Carbon Dioxide emission from India only, S = 0.1 * 2,500,000 = 250,000 ton or 250 Kilo Ton carbon dioxide emitted from India only.
Benefit for Laptop in Worldwide Energy saves: - In world, there are 400 million laptop users and in general, every laptop consumes all total average 80 W-H in 1 hour. It means the amount of total power consumed while working with the laptop at least 8 hours in a day, E = 80*8*400,000,000 = 256,000,000,000 W-H which mean on an average, daily 256 Giga W-H energy is Daily consumed for this purpose only and in one year the total power consumption, X = 256 * 365 = 93,440 Giga W-H. CO2 Emission controlled: - 0.1 ton extracting from one laptop in each year. So, the total Carbon Dioxide emission, S = 0.1 * 400,000,000 = 40,000,000 ton or 40 million Ton carbon dioxide emitted. Cost: -the cost of the solar panel is about 600. But when the charger will be manufactured at the industrial level the pries decrease below 500.
Benefit from Computer peripherals Power consumption percentage
Benefit from Computer peripherals • The average desktop computer consumes = 407 kWh per year . • The average CRT monitor consumes approximately = 220 kWh per year, and the average LCD monitor consumes =132 kWh per year. • The average laser printer in the study consumed = 280 kWh per year. • Laser multifunction devices followed suit, consuming = 200 kWh per year on average. • Total no. of personal computer in India is 15 million. So, the total amount of power consumption by the computers in India is = 15,000,000*407= 6,105,000,000 kWh or 6105 Giga WH. • A complete desktop PC emanates 0.7 kg carbon dioxide per kWh. So, the total amount of carbon dioxide emission is 0.7* 6,105,000,000= 4,273,500,000kg or 4.27 million ton of carbon dioxide.
Benefit for Comp. Peripherals in Worldwide • The average desktop computer consumes = 407 kWh per year . • The average CRT monitor consumes approximately = 220 kWh per year, and the average LCD monitor consumes =132 kWh per year. • The average laser printer in the study consumed = 280 kWh per year. • Laser multifunction devices followed suit, consuming = 200 kWh per year on average. • Total no. of personal computer in world is 1.5 billion. So, the total amount of power consumption by the computers in India is = 1,500,000,000*407= 610,500,000,000 kWh or 610.5 Tera WH. • A complete desktop PC emanates 0.7 kg carbon dioxide per kWh. So, the total amount of carbon dioxide emission is 0.7* 610,500,000,000 = 427,350,000,000 kg or 427.35 million ton of carbon dioxide.
Benefit from the project for BTS Energy saves: - In India, there are over 3,30,000 Base Transmitting Station (BTS) and every BTS consumes all total average 5 kW-H in 1 hour including all payloads. So, the total power consumed in a day by BTS, P= 5*24 = 120 kW-H, and in one year the power consumption is, E = 120 * 365 = 43,800 kW-H and for all BTS in India the value becomes, Q = 43800 * 330000 = 14454,000,000kW-H which mean on an average the total power consumption in one year in India only by all BTSs is = 14.454 Tera W-H = 14454 Giga W-H . Fuel controlled: - In India, there are over 1,12,000 Base Transmitting Station (BTS) in rural areas only and due to the power supply problem the 15kW-H Diesel Generator consumes 2 liter diesel per hour. So, the total consumption by the BTSs in rural area in one hour H= 2 * 3,30,000 = 6,60,000 liter diesel. They averagely run 12 hours in a day. So, the total fuel consumption in a day by all BTSs C = 660000 * 12 = 7,290,000 liter diesel. So, in one year the total fuel consumption is F = 7920000 * 365 = 2,890,800,000 liter or more than 2.890 million ton of diesel. CO2 Emission controlled: - each liter diesel burning produces 2.68 kg Carbon dioxide. So, the total amount of carbon dioxide is produced from the BTSs’ diesel generators from India only X = 2,890,800,000 * 2.68 = 7,747,344,000 kg of carbon dioxide or 7.747344 million ton of carbon dioxide from India only.
The Future of Green ICT • Government’s starting renewable energy plans for their nations. • Government’s starting environmental procedures to help the environment out. • Human’s are becoming aware of the affects they take on this planet and acting. • The Private Sector is investing in green technologies to save money. • The future of green technology is now!
ICT solutions For a Sustainable Future Program • Adopting Environment-friendly & smart energy efficient ICT solutions, starting with the transport sector. • Applying Green Architecture foundations and requirement in the Maadi technological Area. • Turning the MCIT premises to be LEED Certified. • Establishing pilot projects for Green and smart ICT applications in the Smart Villages. • Supporting the Ministry of State for Environment Affairs (MSEA) in establishing a Climate Change database Center.
Special Interest • Solar charger for computer and computer peripherals for rural area where electricity is available for 4 hours with voltage fluctuation. • For Rural exchange and Telephone service due to the irregularities in supply of electricity of poor quality – fluctuating voltage – some times damaging the system.
Conclusion It is quite possible to introduce photovoltaic charger for mobile, computer and computer peripherals as well as rural exchanges. Mobile charger is already in place. Within next 3 months photovoltaic charger will be in place for computer-desktop, laptop, computer peripherals as well as rural telephone exchanges.
Steps Taken by IIT-A for Green ICT • Green mobile charger – well demonstrated, is ready for the industrial role over. • Green ICT is introduced as an Elective in B.Tech final year and M.Tech batches. • M.Tech program in Green Energy System Engineering is under planing. • Green ICT Center has been proposed to establishe. • “Green Super Cloud Computing Center” is going to be established. • Many more project are going on in the field of Green ICT.
Industry-Academic partnership IIIT-A ready for the challenge
Acknowledgement • Dr. Sonali Agarwal, Senior lecturer, IIITA • Mr. Sayantan Nath, Research Scholar, IIITA