1 / 10

Mathematica (2)

Mathematica (2). 3 次元曲線・曲面のパラメータ表示. ParametricPlot3D[{Sin[t],Cos[t],t/3},{t,0,4Pi}];. ParametricPlot3D[{v Sin[u],v Cos[u],u/3}, {u,0,4Pi},{v,-1,1}];. ParametricPlot3D[{Cos[u]Cos[v], Cos[u] Sin[v] , Sin[u]}, {u,-Pi/2,Pi}, {v,0,2Pi}];.

rhoda
Download Presentation

Mathematica (2)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mathematica (2)

  2. 3次元曲線・曲面のパラメータ表示 ParametricPlot3D[{Sin[t],Cos[t],t/3},{t,0,4Pi}]; ParametricPlot3D[{v Sin[u],v Cos[u],u/3}, {u,0,4Pi},{v,-1,1}]; ParametricPlot3D[{Cos[u]Cos[v], Cos[u]Sin[v], Sin[u]}, {u,-Pi/2,Pi},{v,0,2Pi}]; ParametricPlot3D[{Sin[v](3+Cos[u]), Cos[v](3+Cos[u]),Sin[u]},{u,0,2Pi},{v,0,2Pi}];

  3. 式の展開・因数分解・簡単化 展開 In:[1]= Expand[(b+a x)^2] Out[1]= b2 + 2abx + a2x2 In:[2]= Factor[%] Out[2]= (b + ax)2 In:[3]= Factor[x^6 - 1] Out[3]= (-1+x)(1+x)(1-x+x2)(1+x+x2) In:[4]= y = 1/(1+x) + 1/(1-x) Out[4]= In:[5]= Simplify[y] Out[5]= -2/(-1+x2) 因数分解 簡単化

  4. 方程式を解く: Solve[], NSolve[] In:[1]= Solve[x^2 - 2x - 4 ==0, x] Out[1]= In:[2]= N[%] Out[2]= In:[3]= NSolve[x^2 - 2x - 4 ==0, x] Out[3]= 4次方程式までは必ず解ける。 5次以上は(普通は)Solve[]では解けないが、 NSolve[] で数値的に解くことは可能。

  5. 連立方程式 In:[1]= Solve[{2x+3y==0,x-2y+3==0},{x,y}] Out[1]= In:[2]= Solve[{2x+3y==0,x^2+y^2==1},{x,y}] Out[2]= In:[3]= Solve[{a x+b y==0,x^2+y^2==r^2},{x,y}] Out[3]=

  6. 数値解を探す:FindRoot[] In:[1]= Plot[{Exp[-x],Sin[x]},{x,0,8}]; In:[2]= FindRoot[Exp[-x]==Sin[x],{x,0}] Out[2]= {{x → 0.588533}} In:[3]= FindRoot[Exp[-x]==Sin[x],{x,3}] Out[4]= {{x → 3.09636}} 最小値を探す: FindMinimum[] In:[1]= Plot[Sin[x]/x,{x,0,Pi}]; In:[2]= FindMinimum[Sin[x]/x,{x,5}] Out[2]= {-0.217234,{x → 4.49341}}

  7. 微分: D[f,x] In:[1]= D[x^2 - x - 6, x] Out[1]= -1 + 2x In:[2]= D[x^n,x] Out[2]= nx-1+n In:[3]= D[Cos[a x], x] Out[3]= -a Sin[a x] In:[4]= D[Cos[a x], {x,2}] Out[4]= -a2 Cos[a x] In:[5]= D[Cos[x^2 y], x,y] Out[5]= -2x3y Cos[x2y]-2x Sin[x2y]

  8. 積分: Integrate[] In:[1]= Integrate[x^n, x] Out[1]= In:[2]= Integrate[Sqrt[x^2+a],x] Out[2]= In:[3]= Integrage[Sin[a x], {x,0,Pi}] In:[4]= Ingegrate[Sin[Sin[x]],x] In:[5]= NIntegrate[Sin[Sin[x]],{x,0,Pi}]

  9. 級数:Sum[] 極限:Lim[] In:[1]= Sum[x^n/n!,{n,0,5}] Out[1]= 1+x+…(略) In:[2]= NSum[1/n,{n,1,100}] Out[2]= 5.18738 In:[3]= Sum[x^n,{n,0,Infinity}] Out[3]= 1/(1-x) In:[1]= Limit[Sin[x]/x,x->0] Out[1]= 1 In:[2]= Limit[(3x^2-1)/(x^2+5),x->Infinity] Out[2]= 3

  10. Taylor展開: Series[] Series[f[x],{x,x0,n}] In:[1]= Series[Sin[x],{x,0,5}] Out[1]= In:[2]= Series[Exp[-ax]/Cos[x],{x,0,4}] Out[2]=

More Related