1 / 55

Alaphangmagassag (virtual pitch) Terhardt (1972-74): megkulombozendo “virtual pitch” es

Alaphangmagassag (virtual pitch) Terhardt (1972-74): megkulombozendo “virtual pitch” es “spectral pitch” dimenziok Virtual pitch: valoszinuleg (=biztos) idoelemzesbol adodik Spectral pitch: hangkepelemzes Ket eszleles: hangmagassag es hangszin.

rhys
Download Presentation

Alaphangmagassag (virtual pitch) Terhardt (1972-74): megkulombozendo “virtual pitch” es

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Alaphangmagassag (virtual pitch) Terhardt (1972-74): megkulombozendo “virtual pitch” es “spectral pitch” dimenziok Virtual pitch: valoszinuleg (=biztos) idoelemzesbol adodik Spectral pitch: hangkepelemzes Ket eszleles: hangmagassag es hangszin

  2. Alaphangmagassag erzekelese:idobe telik? (peldak) “Virtual pitch” hatara kb 1 kHz Dominans frekvenciaterulet (<1500 Hz) es felhangrendszamok (2-6) (Ritsma, 1962) Autokorrelacio reszlegesen megmagyarazza (Matlab peldak)

  3. E Λ

  4. Szurt zajnak autokorrelacioja alacsony, feher zajnak nulla

  5. Feloldott es feloldatlan komponensek: Harmonikus felhangok linearisan (Hz) kovetik egymast, Mig a ful tonotopiai rendszere Greenwood egyenletet koveti

  6. Basilar membrane (=alaphàrtya?) BM_mm = (16,7) log10 ((0,006046) freq + 1) (Greenwood egyenlőség)

  7. Theorem proof obvious but no room to give it here...

  8. Time-domain processing • output of cochlea temporally structured • neural circuitry specialized for time

  9. Licklider

  10. Licklider from cochlea

  11. Licklider

  12. Auditory Tuning Curve

  13. period --> pitch

  14. Jeffress similar model, based on binaural interaction Licklider, Jeffress: excitatory interaction

  15. de Cheveigné Harmonic cancellation: inhibitory interaction

  16. period --> pitch

  17. medial superior olive (MSO)

  18. Lateral superior olive (LSO)

  19. Principle of MSO "coincidence counter" neuron Activated if impulses are simultaneous at input

  20. Right ear Left ear Delay line Model by Jeffress (1948)

  21. Principle of LSO "anti-coincidence counter" neuron activated except if impulses are simultaneous at input

  22. Durlach model similar to Jeffress’s, based on binaural interaction (Equalization-Cancellation)

  23. 2 types of model • Correlation (auto- & cross-) • (excitatory interaction) • Cancellation • (inhibitory interaction)

  24. 2 types of model • Correlation (auto- & cross-) • (excitatory interaction) • Cancellation • (inhibitory interaction)

  25. Basic ingredients running autocorrelation

  26. Basic ingredients running autocorrelation

  27. Basic ingredients running autocorrelation

  28. Basic ingredients running autocorrelation

  29. Basic ingredients running autocorrelation

  30. Basic ingredients running autocorrelation

  31. Basic ingredients running autocorrelation left

  32. Basic ingredients running autocorrelation left right

  33. Basic ingredients running autocorrelation left right running crosscorrelation

  34. Structure 1 2 3 fast signal processing

  35. 1. Licklider model of pitch E E

  36. 1. Licklider model of pitch • Module 1: calculate autocorrelation & • crosscorrelation for all t, t, q • Module 2: select autocorrelation with • parameter t • Module 3: vary t while monitoring output • of 2 for a maximum

  37. 2. Jeffress model of localization • Module 2: select crosscorrelation with • parameter q • Module 3: vary q while monitoring output • of 2 for a maximum

  38. 4. Cancellation model of pitch

  39. 4. Cancellation model of pitch

  40. 4. Cancellation model of pitch autocorrelation terms

  41. 4. Cancellation model of pitch • Module 2: linear combination of • autocorrelation terms (parameter t) • Module 3: vary t while monitoring output • of 2 for a minimum

  42. 5. Equalization-Cancellation (Durlach)

  43. 5. Equalization-Cancellation (Durlach)

  44. 5. Equalization-Cancellation (Durlach) autocorrelation & crosscorrelation terms

More Related