1 / 29

Comprehensive Guide to Solar and Bio Energy Sources and Management

This comprehensive guide explores the present scenario and future prospects of solar and bio energy sources. It covers solar energy technologies like solar heating, photovoltaics, and solar architecture, while also delving into bioenergy derived from organic materials like wood waste and agricultural by-products. The text discusses methods of generating energy from biomass and how solar energy is converted into electrical energy, highlighting the benefits, applications, and economic aspects of these renewable energy sources.

rileyb
Download Presentation

Comprehensive Guide to Solar and Bio Energy Sources and Management

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ENERGYSOURCESANDMANAGEMENTOFELECTRICALENERGY SUBMITTED BY Mr. Manish Aggarwal HOD in EE

  2. TOPICS • Presentscenario,futureprospectsandeconomiccriteria • Solarenergy • Bioenergy • Windenergy • Geo-thermalandtidalenergy • Magnetohydrodynamic(MHD)Powergeneration • Chemicalenergysources • Energyconservationandmanagement

  3. 1)PRESENTSCENARIO

  4. FUTUREENERGYSCENARIO

  5. 2)SOLARENERGY  SolarenergyisradiantlightandheatfromtheSunthatisharnessedusingarangeofever-evolvingtechnologiessuchassolar heating,photo voltaics,solar thermal energy,solararchitecture,moltensaltpowerplantsandartificial photosynthesis.  Itisanimportantsourceofrenewable energyanditstechnologiesarebroadlycharacterizedaseitherpassive solaroractive solar dependingonhowtheycaptureanddistributesolarenergyorconvertitintosolar power.Activesolartechniquesincludetheuseofphotovoltaicsystems,concentrated solar powerandsolar water heatingtoharnesstheenergy.PassivesolartechniquesincludeorientingabuildingtotheSun,selectingmaterialswith Favorablethermal massorlight-dispersingproperties,anddesigningspacesthatnaturallycirculate air.  Thelargemagnitudeofsolarenergyavailablemakesitahighlyappealingsourceofelectricity.TheUnited Nations Development Programinits2000WorldEnergyAssessmentfoundthattheannualpotentialofsolarenergywas1,575–49,837exa joules(EJ).Thisisseveraltimeslargerthanthetotalworld energy consumption,whichwas559.8EJin2012.  In2011,theInternational Energy Agencysaidthat"thedevelopmentofaffordable,inexhaustibleandcleansolarenergytechnologieswillhavehugelonger-termbenefits.Itwillincrease countries’ energy security through reliance on an indigenous, inexhaustible and mostlyimport-independentresource,enhancesustainability,reducepollution,lowerthecostsofmitigatingglobal warming,andkeepfossil fuelpriceslowerthanotherwise.Theseadvantagesareglobal.Hencetheadditionalcostsoftheincentivesforearlydeploymentshouldbeconsideredlearninginvestments;theymustbewiselyspentandneedtobewidelyshared“

  6. HOWSOLARENERGYCONVERTEDINTOELECTRICAL ENERGY  Lightstrikingasiliconsemiconductorcauseselectronstoflow,creatingelectricity.Solarpowergeneratingsystemstakeadvantageofthispropertytoconvertsunlightdirectlyintoelectricalenergy.  Solar panels (also called “solar modules“) produce direct current (DC),whichgoesthroughapowerinvertertobecomealternatingcurrent(AC)— electricitythatwecanuseinthehomeoroffice,likethatsuppliedbyautilitypowercompany. Therearetwotypesofsolarpowergeneratingsystems:grid-connectedsystems,whichareconnectedtothecommercialpowerinfrastructure;andstand-alonesystems,whichfeedelectricitytoafacilityforimmediateuse,ortoabatteryforstorage. Grid-connectedsystemsareusedforhomes,publicfacilitiessuchasschoolsandhospitals,andcommercialfacilitiessuchasofficesandshoppingcenters.Electricitygeneratedduringthedaytimecanbeusedrightaway,andinsomecasessurpluselectricitycanbesoldtotheutilitypowercompany.Ifthesystemdoesn’t generate enough electricity, or generates none at all (for example,onacloudyorrainyday,oratnight)electricityispurchasedfromtheutilitypowercompany.Powerproductionlevelsandsurplussellingcanbecheckedinrealtimeonamonitor,aneffectivewaytogaugedailyenergyconsumption. Stand-alonesystemsareusedinavarietyofapplications,includingemergencypowersupplyandremotepowerwheretraditionalinfrastructureisunavailable.

  7. APPLICATIONOFSOLARENERGY Solarwaterheater Solarfurnaces

  8. APPLICATIONOFSOLARENERGY Solarcooker Solarpumping

  9. 3)BIO-ENERGY  Bioenergyisrenewable energymadeavailablefrommaterialsderivedfrombiologicalsources.Biomassisanyorganicmaterialwhichhasstoredsunlightintheformofchemicalenergy.Asafuelitmayincludewood,woodwaste,straw,manure,sugarcane,andmanyotherby-productsfromavarietyofagriculturalprocesses.By2010,therewas35GW(47,000,000hp)ofgloballyinstalledbioenergycapacityforelectricitygeneration,ofwhich7GW(9,400,000hp)wasintheUnited States.  Initsmostnarrowsenseitisasynonymtobiofuel,whichisfuel derivedfrombiologicalsources.Initsbroadersenseit includesbiomass,thebiologicalmaterialusedasabiofuel,aswellasthesocial,economic,scientificandtechnicalfieldsassociatedwithusingbiologicalsourcesforenergy.Thisisacommonmisconception,asbioenergyistheenergyextractedfromthebiomass,asthebiomassisthefuelandthebioenergyistheenergycontainedinthefuel  ThereisaslighttendencyforthewordbioenergytobefavouredinEuropecomparedwithbiofuelinAmerica

  10. METHODSOFGENERATINGENERGY FROMBIOMASS  Combustion Themostobviouswayofextractingenergyfrombiomass,thetechnologyofdirectcombustioniswellunderstood,straightforwardandcommerciallyavailable. Combustionsystemscomeinawiderangeofshapesandsizesburningvirtuallyanykindoffuel,fromchickenmanureandstrawbalestotreetrunks,municipalrefuseandscraptyres.Someofthewaysinwhichheatfromburningwastesiscurrentlyusedincludespaceandwaterheating,industrialprocessingandelectricitygeneration.Oneproblemwiththismethodisitsverylowefficiency.Withanopenfiremostoftheheatiswastedandisnotusedtocookorwhatever.Onemethodofimprovingthisindevelopingcountriesistobuildstovesoutofmudandscrapiron.  Pyrolysis Awiderangeofenergy-richfuelscanbeproducedbyroastingdrywoodymatterlikestrawandwoodchips.Theprocesshasbeenusedforcenturiestoproducecharcoal.Thematerialispulverisedorshreddedthenfedintoareactorvesselandheatedintheabsenceofair.Pyrolysiscanalsobecarriedoutinthepresenceofasmallquantityofoxygen('gasification'),water('steamgasification')orhydrogen('hydrogenation').Oneofthemostusefulproductsismethane,whichisasuilablefuelforelectricitygenerationusinghigh-efficiencygasturbines.

  11.  AnaerobicDigestion Biogasisproducedwhenwetsewagesludge,animaldungorgreenplantsareallowedtodecomposeinasealedtankunderanaerobic(oxygen-free)conditions.Feedstockslikewoodshavings,strawandrefusemaybeused,butdigestiontakesmuchlonger.Eachkilogramoforganicmaterial(dryweight)canbeexpectedtoyield450-500litresofbiogas.Theresidueleftafterdigestionisapotentiallyvaluablefertilizerorcompost.Fermentation:Ethanol(ethylalcohol)isproducedbythefermentationofsugarsolutionbynaturalyeasts.Suitablefeedstocksincludecrushedsugarbeetandfruit.Sugarscanalsobemanufacturedfromvegetablestarchesandcellulosebypulpingandcooking,orfromcellulosebymilingandtreatmentwithhotacid. Afterabout30hoursoffermentation,thebrewcantains6-10percentalcohol,whichcanberemovedbydistillationasafuel.  Gasification Thisprocess,usuallyusingwoodproducesaflammablegasmixtureofhydrogen,carbonmonoxide,methaneandothernonflammablebyproducts.Thisisdonebypartiallyburningandpartiallyheatingthebiomass(usingtheheatfromthelimitedburning)inthepresenceofcharcoal(anaturalby-productofburningbiomass).Thegascanbeusedinsteadofpetrolandreducesthepoweroutputofthecarby40%.Itisalsopossiblethatinthefuturethisfuelcouldbeamajorsourceofenergyforpowerstations.  Fermentation Ifthebiomassusedis(orcanbeconvertedinto)mostlysugar,thenyeastcanbeadded.Thefermentationthatfollowsproducesalcoholwhichisaveryhighenergyfuelthatmakesitverypracticleforuseincars.ThishasbeentriedsuccesfullyinBrazil.

  12. WETANDDRYPROCESSES

  13. 4)WINDENERGY  Windpoweristheuseofair flowthroughwind turbinestomechanically powergeneratorsforelectric power.Windpower,asanalternativetoburningfossil fuels,isplentiful,renewable, widelydistributed,clean,producesnogreenhouse gasemissionsduringoperation,consumesnowater,anduseslittleland.Theneteffects on the environmentarefarlessproblematicthanthoseofnonrenewable powersources.  Wind farmsconsistofmanyindividualwindturbines,whichareconnectedtotheelectric powertransmissionnetwork.Onshorewindisaninexpensivesourceofelectricpower,competitivewithorinmanyplacescheaperthancoalorgasplants.Offshorewindissteadierandstrongerthanonland,andoffshore farmshavelessvisualimpact,butconstructionandmaintenancecostsareconsiderablyhigher.Smallonshorewindfarmscanfeedsomeenergyintothegridorprovideelectricpowertoisolatedoff-gridlocations.  Windpowergivesvariable power,whichisveryconsistentfromyeartoyearbuthassignificantvariationovershortertimescales.Itisthereforeusedinconjunctionwithotherelectric powersourcestogiveareliablesupply.Astheproportionofwindpowerinaregionincreases,aneedtoupgradethegrid,andaloweredabilitytosupplantconventionalproductioncan occur.Power-managementtechniquessuchashavingexcesscapacity,geographically distributedturbines,dispatchable backingsources,sufficienthydroelectric power,exportingandimportingpowertoneighboringareas,orreducingdemandwhenwindproductionislow,caninmanycasesovercometheseproblems.Inaddition,weather forecastingpermitstheelectric-powernetworktobereadiedforthepredictablevariationsinproductionthatoccur.  Asof2015,Denmark generates40%ofitselectricpowerfromwind,andatleast83othercountriesaroundtheworldareusingwindpowertosupplytheirelectricpowergrids.In2014,globalwindpowercapacityexpanded16%to369,553MW.Yearlywindenergyproductionisalsogrowingrapidlyandhasreachedaround4%ofworldwideelectricpowerusage,11.4%intheEU.

  14. WINDENERGYCONVERSIONSYSTEM  Awindenergyconversionsystemincludesupperandlowerwindturbineshavingcounter-rotatingbladeassembliessupportedforrotationaboutaverticalrotationaxis,witheachbladeassemblycarryingarotorforrotationpastastatortoproduceanelectricaloutput.Thewindturbinesaresupportedbyatoweratanelevatedpositionabovetheground.Eachwindturbineproducestorque,andthewindenergyconversionsystemprovidesforbalancingthetorquestoavoidanettorqueonthetower.Adjustmentmechanismsareprovidedforadjustingbladepitchandforadjustingthesizeofanairgapbetweenastatorandarotorthatcomesintoalignmentwiththestatorastherotorrotatestherepast.Thewindenergyconversionsystemprovidesahoodforsupplyingintakeairtoawindturbineandanexhaustplenumforexhaustingairfromthewindturbine,withthehoodandtheexhaustplenumbeingdirectionallypositionable.

  15. WINDMILLS  Awindmillisamillthatconvertstheenergy of windintorotationalenergybymeansofvanescalledsailsorblades. Centuriesago,windmillsusuallywereusedtomillgrain(gristmills),pumpwater(wind pumps),or both.Themajorityofmodernwindmillstaketheformofwind turbinesusedtogenerateelectricity,orwind pumpsusedtopumpwater,eitherforlanddrainageortoextractgroundwater

  16. HOWDOESAWINDTURBINEGENERATEELECTRICITY?  Windpowerconvertsthekineticenergyinwindtogenerateelectricityormechanicalpower.Thisisdonebyusingalargewindturbineusuallyconsistingofpropellers;theturbinecanbeconnectedtoageneratortogenerateelectricity,orthewindusedasmechanicalpowertoperformtaskssuchaspumpingwaterorgrindinggrain.Asthewindpassestheturbinesitmovestheblades,whichspinstheshaft.Therearecurrentlytwodifferentkindsofwindturbinesinuse,theHorizontalAxisWindTurbines(HAWT)ortheVerticalAxisWindTurbines(VAWT).HAWTarethemostcommon wind turbines, displaying the propeller or ‘fan-style’ blades, and VAWT are usually in an ‘egg-beater’ style

  17. 5)GEOTHERMALENERGY  TheEarth'sheat-calledgeothermalenergy-escapesassteamatahotspringsinNevada.Credit:SierraPacific  GeothermalenergyistheheatfromtheEarth.It'scleanandsustainable.ResourcesofgeothermalenergyrangefromtheshallowgroundtohotwaterandhotrockfoundafewmilesbeneaththeEarth'ssurface,anddownevendeepertotheextremelyhightemperaturesofmoltenrockcalledmagma.  Almosteverywhere,theshallowgroundorupper10feetoftheEarth'ssurfacemaintainsanearlyconstanttemperaturebetween50°and60°F(10°and16°C).Geothermalheatpumpscantapintothisresourcetoheatandcoolbuildings.Ageothermalheatpumpsystemconsistsofaheatpump,anairdeliverysystem(ductwork),andaheatexchanger-asystemofpipesburiedintheshallowgroundnearthebuilding.Inthewinter,theheatpumpremovesheatfromtheheatexchangerandpumpsitintotheindoorairdeliverysystem.Inthesummer,theprocessisreversed,andtheheatpumpmovesheatfromtheindoorairintotheheatexchanger.Theheatremovedfromtheindoorairduringthesummercanalsobeusedtoprovideafreesourceofhotwater.  IntheUnitedStates,mostgeothermalreservoirsofhotwaterarelocatedinthewesternstates,Alaska,andHawaii.Wellscanbedrilledintoundergroundreservoirsforthegenerationofelectricity.Somegeothermalpowerplantsusethesteamfromareservoirtopoweraturbine/generator,whileothersusethehotwatertoboilaworkingfluidthatvaporizesandthenturnsaturbine.HotwaternearthesurfaceofEarthcanbeuseddirectlyforheat.Direct-useapplicationsincludeheatingbuildings,growingplantsingreenhouses,dryingcrops,heatingwateratfishfarms,andseveralindustrialprocessessuchaspasteurizingmilk.  Hotdryrockresourcesoccuratdepthsof3to5mileseverywherebeneaththeEarth'ssurfaceandatlesserdepthsincertainareas.Accesstotheseresourcesinvolvesinjectingcoldwaterdownonewell,circulatingitthroughhotfracturedrock,anddrawingofftheheatedwaterfromanotherwell.Currently,therearenocommercialapplicationsofthistechnology.Existingtechnologyalsodoesnotyetallowrecoveryofheatdirectlyfrommagma,theverydeepandmostpowerfulresourceofgeothermalenergy.

  18. TIDALENERGY  Tidalpowerortidalenergyisaformofhydropowerthatconvertstheenergyobtainedfromtidesintousefulformsofpower,mainlyelectricity.  Althoughnotyetwidelyused,tidalenergyhaspotentialforfutureelectricitygeneration.Tidesaremorepredictablethanthe windandthe sun.Amongsourcesofrenewable energy,tidalenergyhastraditionallysufferedfromrelativelyhighcostandlimitedavailabilityofsiteswithsufficientlyhightidalrangesorflowvelocities,thusconstrictingitstotalavailability.However,manyrecenttechnologicaldevelopmentsandimprovements,bothindesign(e.g.dynamictidal power,tidal lagoons)andturbinetechnology(e.g.newaxial turbines,crossflow turbines),indicatethatthetotalavailabilityoftidalpowermaybemuchhigherthanpreviouslyassumed,andthateconomicandenvironmentalcostsmaybebroughtdowntocompetitivelevels.  Historically,tide millshavebeenusedbothinEuropeandontheAtlanticcoastofNorthAmerica.Theincomingwaterwascontainedinlargestorageponds,andasthetidewentout,itturnedwaterwheelsthatusedthemechanicalpoweritproducedtomillgrain .TheearliestoccurrencesdatefromtheMiddle Ages,orevenfromRoman times.Theprocessofusingfallingwaterand spinningturbinestocreateelectricitywasintroducedintheU.S.andEuropeinthe19thcentury.  Theworld'sfirstlarge-scaletidalpowerplantwastheRance Tidal Power StationinFrance,whichbecameoperationalin1966.ItwasthelargesttidalpowerstationintermsofoutputuntilSihwa Lake Tidal Power StationopenedinSouthKoreainAugust2011.TheSihwastationusesseawalldefensebarrierscompletewith10turbinesgenerating254MW

  19. STEAMGENERATIONANDELECTRICITY GENERATION  Thesteam-electricpowerstationisapower stationinwhichtheelectricgeneratorissteamdriven.Waterisheated,turnsintosteamandspinsasteam turbinewhichdrivesanelectricalgenerator.Afteritpassesthroughtheturbine,thesteam iscondensedinacondenser.Thegreatestvariationinthedesignofsteam-electricpowerplantsisduetothedifferentfuelsources.  Almostallcoal,nuclear,geothermal,solar thermal electricpowerplants,waste incineration plantsaswellasmanynaturalgaspowerplantsaresteam-electric.Natural gasisfrequentlycombustedingas turbinesaswellasboilers.Thewasteheatfromagasturbinecanbeusedtoraisesteam,inacombined cycleplantthatimprovesoverallefficiency.  Worldwide,mostelectric powerisproducedbysteam-electricpowerplants,whichproduceabout86%ofallelectricgenerationTheonlyothertypesofplantsthatcurrentlyhaveasignificantcontribution arehydroelectricandgasturbineplants,whichcanburnnaturalgas ordiesel.Photovoltaic panels,wind turbinesandbinarycyclegeothermalplantsarealsonon-steamelectric,butcurrentlydonotproducemuchelectricity

  20. HOWELECTRICITYISGENERATEDFROM GEOTHERMALENERGY  Whenthegeothermalresourceproducesasaturatedorsuperheatedvapor,thesteamiscollectedfromtheproductionwellsandsenttoaconventionalsteamturbine.Beforethesteamenterstheturbine,appropriatemeasuresaretakentoremoveanysoliddebrisfromthesteamflow,aswellascorrosivesubstancescontainedintheprocessstream(typicallyremovedwithwaterwashing).Ifthesteamatthewellheadissaturated,stepsaretakentoremoveanyliquidthatispresentorformspriortothesteamenteringtheturbine.Normally,acondensingturbineisused;however,insomeinstances,abackpressureturbineisusedthatexhaustssteamdirectlytotheambient.[  Thesteamdischargestoacondenserwhereitiscondensedatasubatmosphericpressure(typicallyafewinchesofHg).ThecondensershowninFig.1isabarometriccondenser.Inabarometriccondenser,thecoolingwaterissprayeddirectlyintothesteam,withthecoolingwaterandcondensatebeingpumpedtoacoolingtowerwherethecondensingheatloadisrejectedtotheambient.Someplantsusesurfacecondenserswherethelatentheatfromthecondensingsteamistransferredtocoolingwaterbeingcirculatedthroughthecondensertubes.Withasurfacecondenser,thecoolingwaterandcondensatearetypicallypumpedtothecoolingtowerinseparatestreams.Thesteamcondensateprovidesamakeupwatersourcefortheevaporativeheatrejectionsystem.Anyexcesscondensate,togetherwiththetowerblowdown,isinjectedbackintothereservoir.  Hydrothermalresourcestypicallycontainvaryingamountsofdissolvedmineralsandgasesthatimpactboththedesignandoperationoftheenergyconversionsystems.Inpowercycleswheresteamisextractedfromthegeothermalresourceandexpandedinacondensingturbine,thecycledesignmustaccountfortheremovalofthenoncondensablegasesextractedfromtheresourcewiththesteam.Ifnotremoved,thesegasesaccumulateinthecondenser,raisingtheturbineexhaustpressureanddecreasingpoweroutput.Whenhydrogensulfideispresentintheprocesssteam,italsoaccumulatesinthecondenser,thoughaportionpartitionsordissolvesinthecondensateorcoolingwater.Whenthehydrogensulfidelevelsaresufficientlyhighsothatsomeabatementprocessofthecondensateorcoolingwaterisrequired,surfacecondensersaretypicallyusedtominimizethequantityofwaterthathastobetreated.Inaddition,thenoncondensablegasstreamcontaininghydrogensulfidemustalsobetreatedpriortobeingreleasedtotheatmospher

  21. 6)MAGNETOHYDRODYNAMICSPOWER GENRATION  Amagnetohydrodynamicgenerator(MHDgenerator)isamagnetohydrodynamicdevicethattransformsthermal energyandkinetic energyintoelectricity.MHDgeneratorsaredifferentfromtraditionalelectric generatorsinthattheyoperateathightemperatureswithoutmoving parts.MHDwasdevelopedbecausethehotexhaustgasofanMHDgeneratorcanheattheboilersofasteampowerplant,increasingoverallefficiency.MHDwasdevelopedasatoppingcycletoincreasetheefficiencyofelectric generation,especiallywhenburningcoalornatural gas.MHDdynamosarethecomplementofMHDpropulsors,whichhavebeenappliedtopumpliquidmetalsandinseveralexperimentalshipengines.  AnMHDgenerator,likeaconventionalgenerator,reliesonmovingaconductorthroughamagnetic fieldtogenerateelectriccurrent.TheMHDgeneratoruseshotconductiveplasmaasthemovingconductor.Themechanicaldynamo,incontrast,usesthemotionofmechanicaldevicestoaccomplishthis.MHDgeneratorsaretechnicallypracticalforfossilfuels,buthavebeenovertakenbyother,lessexpensivetechnologies,such ascombined cyclesinwhichagas turbine'sormolten carbonate fuel cell'sexhaustheatssteamtopowerasteam turbine.  NaturalMHDdynamosareanactiveareaofresearchinplasmaphysicsandareofgreatinterestto thegeophysicsandastrophysicscommunities,sincethemagneticfieldsoftheearthandsunareproducedbythesenaturaldynamos.

  22. CHEMICALENERGYSOURCES FUELCELL  Afuelcellisanelectrochemical cellthatconvertsthechemical energyfromafuelintoelectricitythroughanelectrochemicalreactionofhydrogen fuelwithoxygenoranotheroxidising agent.[1]Fuelcellsaredifferentfrombatteriesinrequiringacontinuoussourceoffuelandoxygen(usuallyfromair)tosustainthechemicalreaction,whereasinabatterythechemicalenergycomesfromchemicalsalreadypresentinthebattery.Fuelcellscanproduceelectricitycontinuouslyforaslongasfuelandoxygenaresupplied.  Thefirstfuelcellswereinventedin1838.ThefirstcommercialuseoffuelcellscamemorethanacenturylaterinNASAspaceprogramstogeneratepowerforsatellitesandspace capsules.Sincethen,fuelcellshavebeenusedinmanyotherapplications.Fuelcellsareusedforprimaryandbackuppowerforcommercial,industrialandresidentialbuildingsandinremoteorinaccessibleareas.Theyarealsousedtopowerfuel cell vehicles,includingforklifts,automobiles,buses,boats,motorcyclesandsubmarines.  Therearemanytypesoffuelcells,buttheyallconsistofananode,acathode,andanelectrolytethatallowspositivelychargedhydrogenions(protons)tomovebetweenthetwosidesofthefuelcell.Attheanodeacatalystcausesthefueltoundergooxidationreactionsthatgenerateprotons(positivelychargedhydrogenions)andelectrons.Theprotonsflowfromtheanodetothecathodethroughtheelectrolyteafterthereaction.Atthesametime,electronsaredrawnfromtheanodetothecathodethroughanexternalcircuit,producingdirect currentelectricity.Atthecathode,anothercatalystcauseshydrogenions,electrons,andoxygentoreact,formingwater.Fuelcellsareclassifiedbythetypeofelectrolytetheyuseandbythedifferenceinstartuptimerangingfrom1secondforprotonexchange membrane fuel cells(PEMfuelcells,orPEMFC)to10minutesforsolid oxide fuel cells(SOFC).Individualfuelcellsproducerelativelysmallelectricalpotentials,about0.7volts,socellsare"stacked",orplacedinseries,tocreatesufficientvoltagetomeetanapplication'srequirements.Inadditiontoelectricity,fuelcellsproducewater,heatand,dependingonthefuelsource,verysmallamountsofnitrogen dioxideandotheremissions.Theenergyefficiencyofafuelcellisgenerallybetween40–60%;however,ifwasteheatiscapturedinacogenerationscheme,efficienciesupto85%canbeobtained.  Arelatedtechnologyisflow batteries,inwhichthefuelcanberegeneratedbyrecharging.  Thefuelcellmarketisgrowing,andin2013PikeResearchestimatedthatthestationaryfuelcellmarketwillreach50GWby2020

  23. APPLICATIONOFFUELCELL  FuelCellTodaycategorisestheuseoffuelcellsintothreebroadareas:portablepowergeneration,stationarypowergeneration,andpowerfortransportation.Wealsoincludeacategoryforfuelandinfrastructure,relatingtotheproduction,distribution,storageanddispensingoffuelsforfuelcells,asthisiscrucialtoimplementingfuelcelltechnology.

More Related