290 likes | 305 Views
This comprehensive guide explores the present scenario and future prospects of solar and bio energy sources. It covers solar energy technologies like solar heating, photovoltaics, and solar architecture, while also delving into bioenergy derived from organic materials like wood waste and agricultural by-products. The text discusses methods of generating energy from biomass and how solar energy is converted into electrical energy, highlighting the benefits, applications, and economic aspects of these renewable energy sources.
E N D
ENERGYSOURCESANDMANAGEMENTOFELECTRICALENERGY SUBMITTED BY Mr. Manish Aggarwal HOD in EE
TOPICS • Presentscenario,futureprospectsandeconomiccriteria • Solarenergy • Bioenergy • Windenergy • Geo-thermalandtidalenergy • Magnetohydrodynamic(MHD)Powergeneration • Chemicalenergysources • Energyconservationandmanagement
2)SOLARENERGY SolarenergyisradiantlightandheatfromtheSunthatisharnessedusingarangeofever-evolvingtechnologiessuchassolar heating,photo voltaics,solar thermal energy,solararchitecture,moltensaltpowerplantsandartificial photosynthesis. Itisanimportantsourceofrenewable energyanditstechnologiesarebroadlycharacterizedaseitherpassive solaroractive solar dependingonhowtheycaptureanddistributesolarenergyorconvertitintosolar power.Activesolartechniquesincludetheuseofphotovoltaicsystems,concentrated solar powerandsolar water heatingtoharnesstheenergy.PassivesolartechniquesincludeorientingabuildingtotheSun,selectingmaterialswith Favorablethermal massorlight-dispersingproperties,anddesigningspacesthatnaturallycirculate air. Thelargemagnitudeofsolarenergyavailablemakesitahighlyappealingsourceofelectricity.TheUnited Nations Development Programinits2000WorldEnergyAssessmentfoundthattheannualpotentialofsolarenergywas1,575–49,837exa joules(EJ).Thisisseveraltimeslargerthanthetotalworld energy consumption,whichwas559.8EJin2012. In2011,theInternational Energy Agencysaidthat"thedevelopmentofaffordable,inexhaustibleandcleansolarenergytechnologieswillhavehugelonger-termbenefits.Itwillincrease countries’ energy security through reliance on an indigenous, inexhaustible and mostlyimport-independentresource,enhancesustainability,reducepollution,lowerthecostsofmitigatingglobal warming,andkeepfossil fuelpriceslowerthanotherwise.Theseadvantagesareglobal.Hencetheadditionalcostsoftheincentivesforearlydeploymentshouldbeconsideredlearninginvestments;theymustbewiselyspentandneedtobewidelyshared“
HOWSOLARENERGYCONVERTEDINTOELECTRICAL ENERGY Lightstrikingasiliconsemiconductorcauseselectronstoflow,creatingelectricity.Solarpowergeneratingsystemstakeadvantageofthispropertytoconvertsunlightdirectlyintoelectricalenergy. Solar panels (also called “solar modules“) produce direct current (DC),whichgoesthroughapowerinvertertobecomealternatingcurrent(AC)— electricitythatwecanuseinthehomeoroffice,likethatsuppliedbyautilitypowercompany. Therearetwotypesofsolarpowergeneratingsystems:grid-connectedsystems,whichareconnectedtothecommercialpowerinfrastructure;andstand-alonesystems,whichfeedelectricitytoafacilityforimmediateuse,ortoabatteryforstorage. Grid-connectedsystemsareusedforhomes,publicfacilitiessuchasschoolsandhospitals,andcommercialfacilitiessuchasofficesandshoppingcenters.Electricitygeneratedduringthedaytimecanbeusedrightaway,andinsomecasessurpluselectricitycanbesoldtotheutilitypowercompany.Ifthesystemdoesn’t generate enough electricity, or generates none at all (for example,onacloudyorrainyday,oratnight)electricityispurchasedfromtheutilitypowercompany.Powerproductionlevelsandsurplussellingcanbecheckedinrealtimeonamonitor,aneffectivewaytogaugedailyenergyconsumption. Stand-alonesystemsareusedinavarietyofapplications,includingemergencypowersupplyandremotepowerwheretraditionalinfrastructureisunavailable.
APPLICATIONOFSOLARENERGY Solarwaterheater Solarfurnaces
APPLICATIONOFSOLARENERGY Solarcooker Solarpumping
3)BIO-ENERGY Bioenergyisrenewable energymadeavailablefrommaterialsderivedfrombiologicalsources.Biomassisanyorganicmaterialwhichhasstoredsunlightintheformofchemicalenergy.Asafuelitmayincludewood,woodwaste,straw,manure,sugarcane,andmanyotherby-productsfromavarietyofagriculturalprocesses.By2010,therewas35GW(47,000,000hp)ofgloballyinstalledbioenergycapacityforelectricitygeneration,ofwhich7GW(9,400,000hp)wasintheUnited States. Initsmostnarrowsenseitisasynonymtobiofuel,whichisfuel derivedfrombiologicalsources.Initsbroadersenseit includesbiomass,thebiologicalmaterialusedasabiofuel,aswellasthesocial,economic,scientificandtechnicalfieldsassociatedwithusingbiologicalsourcesforenergy.Thisisacommonmisconception,asbioenergyistheenergyextractedfromthebiomass,asthebiomassisthefuelandthebioenergyistheenergycontainedinthefuel ThereisaslighttendencyforthewordbioenergytobefavouredinEuropecomparedwithbiofuelinAmerica
METHODSOFGENERATINGENERGY FROMBIOMASS Combustion Themostobviouswayofextractingenergyfrombiomass,thetechnologyofdirectcombustioniswellunderstood,straightforwardandcommerciallyavailable. Combustionsystemscomeinawiderangeofshapesandsizesburningvirtuallyanykindoffuel,fromchickenmanureandstrawbalestotreetrunks,municipalrefuseandscraptyres.Someofthewaysinwhichheatfromburningwastesiscurrentlyusedincludespaceandwaterheating,industrialprocessingandelectricitygeneration.Oneproblemwiththismethodisitsverylowefficiency.Withanopenfiremostoftheheatiswastedandisnotusedtocookorwhatever.Onemethodofimprovingthisindevelopingcountriesistobuildstovesoutofmudandscrapiron. Pyrolysis Awiderangeofenergy-richfuelscanbeproducedbyroastingdrywoodymatterlikestrawandwoodchips.Theprocesshasbeenusedforcenturiestoproducecharcoal.Thematerialispulverisedorshreddedthenfedintoareactorvesselandheatedintheabsenceofair.Pyrolysiscanalsobecarriedoutinthepresenceofasmallquantityofoxygen('gasification'),water('steamgasification')orhydrogen('hydrogenation').Oneofthemostusefulproductsismethane,whichisasuilablefuelforelectricitygenerationusinghigh-efficiencygasturbines.
AnaerobicDigestion Biogasisproducedwhenwetsewagesludge,animaldungorgreenplantsareallowedtodecomposeinasealedtankunderanaerobic(oxygen-free)conditions.Feedstockslikewoodshavings,strawandrefusemaybeused,butdigestiontakesmuchlonger.Eachkilogramoforganicmaterial(dryweight)canbeexpectedtoyield450-500litresofbiogas.Theresidueleftafterdigestionisapotentiallyvaluablefertilizerorcompost.Fermentation:Ethanol(ethylalcohol)isproducedbythefermentationofsugarsolutionbynaturalyeasts.Suitablefeedstocksincludecrushedsugarbeetandfruit.Sugarscanalsobemanufacturedfromvegetablestarchesandcellulosebypulpingandcooking,orfromcellulosebymilingandtreatmentwithhotacid. Afterabout30hoursoffermentation,thebrewcantains6-10percentalcohol,whichcanberemovedbydistillationasafuel. Gasification Thisprocess,usuallyusingwoodproducesaflammablegasmixtureofhydrogen,carbonmonoxide,methaneandothernonflammablebyproducts.Thisisdonebypartiallyburningandpartiallyheatingthebiomass(usingtheheatfromthelimitedburning)inthepresenceofcharcoal(anaturalby-productofburningbiomass).Thegascanbeusedinsteadofpetrolandreducesthepoweroutputofthecarby40%.Itisalsopossiblethatinthefuturethisfuelcouldbeamajorsourceofenergyforpowerstations. Fermentation Ifthebiomassusedis(orcanbeconvertedinto)mostlysugar,thenyeastcanbeadded.Thefermentationthatfollowsproducesalcoholwhichisaveryhighenergyfuelthatmakesitverypracticleforuseincars.ThishasbeentriedsuccesfullyinBrazil.
4)WINDENERGY Windpoweristheuseofair flowthroughwind turbinestomechanically powergeneratorsforelectric power.Windpower,asanalternativetoburningfossil fuels,isplentiful,renewable, widelydistributed,clean,producesnogreenhouse gasemissionsduringoperation,consumesnowater,anduseslittleland.Theneteffects on the environmentarefarlessproblematicthanthoseofnonrenewable powersources. Wind farmsconsistofmanyindividualwindturbines,whichareconnectedtotheelectric powertransmissionnetwork.Onshorewindisaninexpensivesourceofelectricpower,competitivewithorinmanyplacescheaperthancoalorgasplants.Offshorewindissteadierandstrongerthanonland,andoffshore farmshavelessvisualimpact,butconstructionandmaintenancecostsareconsiderablyhigher.Smallonshorewindfarmscanfeedsomeenergyintothegridorprovideelectricpowertoisolatedoff-gridlocations. Windpowergivesvariable power,whichisveryconsistentfromyeartoyearbuthassignificantvariationovershortertimescales.Itisthereforeusedinconjunctionwithotherelectric powersourcestogiveareliablesupply.Astheproportionofwindpowerinaregionincreases,aneedtoupgradethegrid,andaloweredabilitytosupplantconventionalproductioncan occur.Power-managementtechniquessuchashavingexcesscapacity,geographically distributedturbines,dispatchable backingsources,sufficienthydroelectric power,exportingandimportingpowertoneighboringareas,orreducingdemandwhenwindproductionislow,caninmanycasesovercometheseproblems.Inaddition,weather forecastingpermitstheelectric-powernetworktobereadiedforthepredictablevariationsinproductionthatoccur. Asof2015,Denmark generates40%ofitselectricpowerfromwind,andatleast83othercountriesaroundtheworldareusingwindpowertosupplytheirelectricpowergrids.In2014,globalwindpowercapacityexpanded16%to369,553MW.Yearlywindenergyproductionisalsogrowingrapidlyandhasreachedaround4%ofworldwideelectricpowerusage,11.4%intheEU.
WINDENERGYCONVERSIONSYSTEM Awindenergyconversionsystemincludesupperandlowerwindturbineshavingcounter-rotatingbladeassembliessupportedforrotationaboutaverticalrotationaxis,witheachbladeassemblycarryingarotorforrotationpastastatortoproduceanelectricaloutput.Thewindturbinesaresupportedbyatoweratanelevatedpositionabovetheground.Eachwindturbineproducestorque,andthewindenergyconversionsystemprovidesforbalancingthetorquestoavoidanettorqueonthetower.Adjustmentmechanismsareprovidedforadjustingbladepitchandforadjustingthesizeofanairgapbetweenastatorandarotorthatcomesintoalignmentwiththestatorastherotorrotatestherepast.Thewindenergyconversionsystemprovidesahoodforsupplyingintakeairtoawindturbineandanexhaustplenumforexhaustingairfromthewindturbine,withthehoodandtheexhaustplenumbeingdirectionallypositionable.
WINDMILLS Awindmillisamillthatconvertstheenergy of windintorotationalenergybymeansofvanescalledsailsorblades. Centuriesago,windmillsusuallywereusedtomillgrain(gristmills),pumpwater(wind pumps),or both.Themajorityofmodernwindmillstaketheformofwind turbinesusedtogenerateelectricity,orwind pumpsusedtopumpwater,eitherforlanddrainageortoextractgroundwater
HOWDOESAWINDTURBINEGENERATEELECTRICITY? Windpowerconvertsthekineticenergyinwindtogenerateelectricityormechanicalpower.Thisisdonebyusingalargewindturbineusuallyconsistingofpropellers;theturbinecanbeconnectedtoageneratortogenerateelectricity,orthewindusedasmechanicalpowertoperformtaskssuchaspumpingwaterorgrindinggrain.Asthewindpassestheturbinesitmovestheblades,whichspinstheshaft.Therearecurrentlytwodifferentkindsofwindturbinesinuse,theHorizontalAxisWindTurbines(HAWT)ortheVerticalAxisWindTurbines(VAWT).HAWTarethemostcommon wind turbines, displaying the propeller or ‘fan-style’ blades, and VAWT are usually in an ‘egg-beater’ style
5)GEOTHERMALENERGY TheEarth'sheat-calledgeothermalenergy-escapesassteamatahotspringsinNevada.Credit:SierraPacific GeothermalenergyistheheatfromtheEarth.It'scleanandsustainable.ResourcesofgeothermalenergyrangefromtheshallowgroundtohotwaterandhotrockfoundafewmilesbeneaththeEarth'ssurface,anddownevendeepertotheextremelyhightemperaturesofmoltenrockcalledmagma. Almosteverywhere,theshallowgroundorupper10feetoftheEarth'ssurfacemaintainsanearlyconstanttemperaturebetween50°and60°F(10°and16°C).Geothermalheatpumpscantapintothisresourcetoheatandcoolbuildings.Ageothermalheatpumpsystemconsistsofaheatpump,anairdeliverysystem(ductwork),andaheatexchanger-asystemofpipesburiedintheshallowgroundnearthebuilding.Inthewinter,theheatpumpremovesheatfromtheheatexchangerandpumpsitintotheindoorairdeliverysystem.Inthesummer,theprocessisreversed,andtheheatpumpmovesheatfromtheindoorairintotheheatexchanger.Theheatremovedfromtheindoorairduringthesummercanalsobeusedtoprovideafreesourceofhotwater. IntheUnitedStates,mostgeothermalreservoirsofhotwaterarelocatedinthewesternstates,Alaska,andHawaii.Wellscanbedrilledintoundergroundreservoirsforthegenerationofelectricity.Somegeothermalpowerplantsusethesteamfromareservoirtopoweraturbine/generator,whileothersusethehotwatertoboilaworkingfluidthatvaporizesandthenturnsaturbine.HotwaternearthesurfaceofEarthcanbeuseddirectlyforheat.Direct-useapplicationsincludeheatingbuildings,growingplantsingreenhouses,dryingcrops,heatingwateratfishfarms,andseveralindustrialprocessessuchaspasteurizingmilk. Hotdryrockresourcesoccuratdepthsof3to5mileseverywherebeneaththeEarth'ssurfaceandatlesserdepthsincertainareas.Accesstotheseresourcesinvolvesinjectingcoldwaterdownonewell,circulatingitthroughhotfracturedrock,anddrawingofftheheatedwaterfromanotherwell.Currently,therearenocommercialapplicationsofthistechnology.Existingtechnologyalsodoesnotyetallowrecoveryofheatdirectlyfrommagma,theverydeepandmostpowerfulresourceofgeothermalenergy.
TIDALENERGY Tidalpowerortidalenergyisaformofhydropowerthatconvertstheenergyobtainedfromtidesintousefulformsofpower,mainlyelectricity. Althoughnotyetwidelyused,tidalenergyhaspotentialforfutureelectricitygeneration.Tidesaremorepredictablethanthe windandthe sun.Amongsourcesofrenewable energy,tidalenergyhastraditionallysufferedfromrelativelyhighcostandlimitedavailabilityofsiteswithsufficientlyhightidalrangesorflowvelocities,thusconstrictingitstotalavailability.However,manyrecenttechnologicaldevelopmentsandimprovements,bothindesign(e.g.dynamictidal power,tidal lagoons)andturbinetechnology(e.g.newaxial turbines,crossflow turbines),indicatethatthetotalavailabilityoftidalpowermaybemuchhigherthanpreviouslyassumed,andthateconomicandenvironmentalcostsmaybebroughtdowntocompetitivelevels. Historically,tide millshavebeenusedbothinEuropeandontheAtlanticcoastofNorthAmerica.Theincomingwaterwascontainedinlargestorageponds,andasthetidewentout,itturnedwaterwheelsthatusedthemechanicalpoweritproducedtomillgrain .TheearliestoccurrencesdatefromtheMiddle Ages,orevenfromRoman times.Theprocessofusingfallingwaterand spinningturbinestocreateelectricitywasintroducedintheU.S.andEuropeinthe19thcentury. Theworld'sfirstlarge-scaletidalpowerplantwastheRance Tidal Power StationinFrance,whichbecameoperationalin1966.ItwasthelargesttidalpowerstationintermsofoutputuntilSihwa Lake Tidal Power StationopenedinSouthKoreainAugust2011.TheSihwastationusesseawalldefensebarrierscompletewith10turbinesgenerating254MW
STEAMGENERATIONANDELECTRICITY GENERATION Thesteam-electricpowerstationisapower stationinwhichtheelectricgeneratorissteamdriven.Waterisheated,turnsintosteamandspinsasteam turbinewhichdrivesanelectricalgenerator.Afteritpassesthroughtheturbine,thesteam iscondensedinacondenser.Thegreatestvariationinthedesignofsteam-electricpowerplantsisduetothedifferentfuelsources. Almostallcoal,nuclear,geothermal,solar thermal electricpowerplants,waste incineration plantsaswellasmanynaturalgaspowerplantsaresteam-electric.Natural gasisfrequentlycombustedingas turbinesaswellasboilers.Thewasteheatfromagasturbinecanbeusedtoraisesteam,inacombined cycleplantthatimprovesoverallefficiency. Worldwide,mostelectric powerisproducedbysteam-electricpowerplants,whichproduceabout86%ofallelectricgenerationTheonlyothertypesofplantsthatcurrentlyhaveasignificantcontribution arehydroelectricandgasturbineplants,whichcanburnnaturalgas ordiesel.Photovoltaic panels,wind turbinesandbinarycyclegeothermalplantsarealsonon-steamelectric,butcurrentlydonotproducemuchelectricity
HOWELECTRICITYISGENERATEDFROM GEOTHERMALENERGY Whenthegeothermalresourceproducesasaturatedorsuperheatedvapor,thesteamiscollectedfromtheproductionwellsandsenttoaconventionalsteamturbine.Beforethesteamenterstheturbine,appropriatemeasuresaretakentoremoveanysoliddebrisfromthesteamflow,aswellascorrosivesubstancescontainedintheprocessstream(typicallyremovedwithwaterwashing).Ifthesteamatthewellheadissaturated,stepsaretakentoremoveanyliquidthatispresentorformspriortothesteamenteringtheturbine.Normally,acondensingturbineisused;however,insomeinstances,abackpressureturbineisusedthatexhaustssteamdirectlytotheambient.[ Thesteamdischargestoacondenserwhereitiscondensedatasubatmosphericpressure(typicallyafewinchesofHg).ThecondensershowninFig.1isabarometriccondenser.Inabarometriccondenser,thecoolingwaterissprayeddirectlyintothesteam,withthecoolingwaterandcondensatebeingpumpedtoacoolingtowerwherethecondensingheatloadisrejectedtotheambient.Someplantsusesurfacecondenserswherethelatentheatfromthecondensingsteamistransferredtocoolingwaterbeingcirculatedthroughthecondensertubes.Withasurfacecondenser,thecoolingwaterandcondensatearetypicallypumpedtothecoolingtowerinseparatestreams.Thesteamcondensateprovidesamakeupwatersourcefortheevaporativeheatrejectionsystem.Anyexcesscondensate,togetherwiththetowerblowdown,isinjectedbackintothereservoir. Hydrothermalresourcestypicallycontainvaryingamountsofdissolvedmineralsandgasesthatimpactboththedesignandoperationoftheenergyconversionsystems.Inpowercycleswheresteamisextractedfromthegeothermalresourceandexpandedinacondensingturbine,thecycledesignmustaccountfortheremovalofthenoncondensablegasesextractedfromtheresourcewiththesteam.Ifnotremoved,thesegasesaccumulateinthecondenser,raisingtheturbineexhaustpressureanddecreasingpoweroutput.Whenhydrogensulfideispresentintheprocesssteam,italsoaccumulatesinthecondenser,thoughaportionpartitionsordissolvesinthecondensateorcoolingwater.Whenthehydrogensulfidelevelsaresufficientlyhighsothatsomeabatementprocessofthecondensateorcoolingwaterisrequired,surfacecondensersaretypicallyusedtominimizethequantityofwaterthathastobetreated.Inaddition,thenoncondensablegasstreamcontaininghydrogensulfidemustalsobetreatedpriortobeingreleasedtotheatmospher
6)MAGNETOHYDRODYNAMICSPOWER GENRATION Amagnetohydrodynamicgenerator(MHDgenerator)isamagnetohydrodynamicdevicethattransformsthermal energyandkinetic energyintoelectricity.MHDgeneratorsaredifferentfromtraditionalelectric generatorsinthattheyoperateathightemperatureswithoutmoving parts.MHDwasdevelopedbecausethehotexhaustgasofanMHDgeneratorcanheattheboilersofasteampowerplant,increasingoverallefficiency.MHDwasdevelopedasatoppingcycletoincreasetheefficiencyofelectric generation,especiallywhenburningcoalornatural gas.MHDdynamosarethecomplementofMHDpropulsors,whichhavebeenappliedtopumpliquidmetalsandinseveralexperimentalshipengines. AnMHDgenerator,likeaconventionalgenerator,reliesonmovingaconductorthroughamagnetic fieldtogenerateelectriccurrent.TheMHDgeneratoruseshotconductiveplasmaasthemovingconductor.Themechanicaldynamo,incontrast,usesthemotionofmechanicaldevicestoaccomplishthis.MHDgeneratorsaretechnicallypracticalforfossilfuels,buthavebeenovertakenbyother,lessexpensivetechnologies,such ascombined cyclesinwhichagas turbine'sormolten carbonate fuel cell'sexhaustheatssteamtopowerasteam turbine. NaturalMHDdynamosareanactiveareaofresearchinplasmaphysicsandareofgreatinterestto thegeophysicsandastrophysicscommunities,sincethemagneticfieldsoftheearthandsunareproducedbythesenaturaldynamos.
CHEMICALENERGYSOURCES FUELCELL Afuelcellisanelectrochemical cellthatconvertsthechemical energyfromafuelintoelectricitythroughanelectrochemicalreactionofhydrogen fuelwithoxygenoranotheroxidising agent.[1]Fuelcellsaredifferentfrombatteriesinrequiringacontinuoussourceoffuelandoxygen(usuallyfromair)tosustainthechemicalreaction,whereasinabatterythechemicalenergycomesfromchemicalsalreadypresentinthebattery.Fuelcellscanproduceelectricitycontinuouslyforaslongasfuelandoxygenaresupplied. Thefirstfuelcellswereinventedin1838.ThefirstcommercialuseoffuelcellscamemorethanacenturylaterinNASAspaceprogramstogeneratepowerforsatellitesandspace capsules.Sincethen,fuelcellshavebeenusedinmanyotherapplications.Fuelcellsareusedforprimaryandbackuppowerforcommercial,industrialandresidentialbuildingsandinremoteorinaccessibleareas.Theyarealsousedtopowerfuel cell vehicles,includingforklifts,automobiles,buses,boats,motorcyclesandsubmarines. Therearemanytypesoffuelcells,buttheyallconsistofananode,acathode,andanelectrolytethatallowspositivelychargedhydrogenions(protons)tomovebetweenthetwosidesofthefuelcell.Attheanodeacatalystcausesthefueltoundergooxidationreactionsthatgenerateprotons(positivelychargedhydrogenions)andelectrons.Theprotonsflowfromtheanodetothecathodethroughtheelectrolyteafterthereaction.Atthesametime,electronsaredrawnfromtheanodetothecathodethroughanexternalcircuit,producingdirect currentelectricity.Atthecathode,anothercatalystcauseshydrogenions,electrons,andoxygentoreact,formingwater.Fuelcellsareclassifiedbythetypeofelectrolytetheyuseandbythedifferenceinstartuptimerangingfrom1secondforprotonexchange membrane fuel cells(PEMfuelcells,orPEMFC)to10minutesforsolid oxide fuel cells(SOFC).Individualfuelcellsproducerelativelysmallelectricalpotentials,about0.7volts,socellsare"stacked",orplacedinseries,tocreatesufficientvoltagetomeetanapplication'srequirements.Inadditiontoelectricity,fuelcellsproducewater,heatand,dependingonthefuelsource,verysmallamountsofnitrogen dioxideandotheremissions.Theenergyefficiencyofafuelcellisgenerallybetween40–60%;however,ifwasteheatiscapturedinacogenerationscheme,efficienciesupto85%canbeobtained. Arelatedtechnologyisflow batteries,inwhichthefuelcanberegeneratedbyrecharging. Thefuelcellmarketisgrowing,andin2013PikeResearchestimatedthatthestationaryfuelcellmarketwillreach50GWby2020
APPLICATIONOFFUELCELL FuelCellTodaycategorisestheuseoffuelcellsintothreebroadareas:portablepowergeneration,stationarypowergeneration,andpowerfortransportation.Wealsoincludeacategoryforfuelandinfrastructure,relatingtotheproduction,distribution,storageanddispensingoffuelsforfuelcells,asthisiscrucialtoimplementingfuelcelltechnology.