270 likes | 366 Views
Thoughts on movement generation…. Viktor Jirsa. position x. velocity y. position x. nullclines. Phenomena – phenomenological modeling I. position x. time. False starts. position x. velocity y. position x. Phenomena – phenomenological modeling II. nullclines. separatrix.
E N D
Thoughts on movement generation… Viktor Jirsa
position x velocity y position x nullclines Phenomena – phenomenological modeling I
position x time False starts
position x velocity y position x Phenomena – phenomenological modeling II nullclines separatrix
position x velocity y position x nullclines topological constraints on 2-dim. dynamics separatrix Phenomena – phenomenological modeling III
position x velocity y position x Mathematical representation Task constraints nullclines separatrix
Task conditions monostable rhythmic bistable task conditions define topology in phase space by controling the shape of the nullclines
fixed points Excitator Schöner (1990) Jirsa et al. (1999) Beek et al. (2001) Sternad et al. (2001) Jirsa & Kelso (2003) …
Bistable excitator overshoot experiment theory overshoot: - slow dynamics - refractory Co-existence of fixed points?
Coupled Excitators: discrete movement coupling: - sigmoidal - HKB (truncated sigmoidal)
Haken, Kelso, Bunz 1984 Coupled Excitators: rhythmic paradigm
acceleration (convergence) Coupled Excitators: discrete movement
deceleration (divergence) acceleration (convergence) Coupled Excitators: discrete movement crucial parameter: distance of the two effectors
Time difference Acceleration/deceleration time = 50ms
Key points • topology in phase space constrains dynamics system (fixed points, refractory regimes, …) but: specific mathematical realizations not unique • task conditions define topology of flow in phase space • threshold (separatrix) makes ‘false starts’ possible • coupling causes convergence/divergence (special case: rhythmic bimanual coordination)