1 / 32

Charge collection close to the Si-Si0 2 interface of silicon strip sensors

Charge collection close to the Si-Si0 2 interface of silicon strip sensors. Thomas Pöhlsen, Eckhart Fretwurst , Robert Klanner , Sergej Schuwalow , J ö rn Schwandt, Jiaguo Zhang University of Hamburg. O verview. Introduction Charge collection close to the Si-Si0 2 interface

rio
Download Presentation

Charge collection close to the Si-Si0 2 interface of silicon strip sensors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Charge collectionclosetothe Si-Si02interfaceofsiliconstripsensors Thomas Pöhlsen, Eckhart Fretwurst, Robert Klanner, Sergej Schuwalow, Jörn Schwandt, JiaguoZhang University of Hamburg

  2. Overview Introduction Charge collectionclosetothe Si-Si02interface Weighting potential Time resolvedsignals Integrated signals Results: Charge losses vs. humidityandbiashistory Conclusions Outlook Charge collection close to the Si-Si02 interface of silicon strip sensors

  3. Motivation – whysurfacestudies? Surfaceeffects: Relevant forsensorstability (breakdown, stabilityofdarkcurrent, etc.) Charge carrierlosses Humidityfoundtoinfluencetheelectricfield in sensor Electricfieldattheinterface ? (surfacecharges, surface potential, oxidecharges, etc. => boundaryconditions ?) humidity H20, H+ OH-, dirt passivation aluminium aluminium n type Si p+ implant p+ implant Si02 Si02 Si02 Charge collection close to the Si-Si02 interface of silicon strip sensors Seite 3

  4. Sensors andirradiation Irradiation: Non-irradiated Irradiated(1 MGyx-rays, 12 keV) surface damage only fixedoxidecharge: Nox = ~ 2 1012cm-2 surfacecurrent: Isurf= ~ 6 µA cm-2 Atmosphereduringmeasurement: Humid (> 50% humidity) Dry (nitrogen, < 5% humidity) T = ~24 °C (roomtemperature) passivation al al n type p+ p+ * + 2 µm Al overhang Si02 Si02 Si02 Charge collection close to the Si-Si02 interface of silicon strip sensors

  5. Measurement procedure (redlaser TCT) Redlaser light (front illumination,  = 660 nm, penetrationdepth ~ 3 µm) Sub ns-pulses (FWHM 100 ps, 1 kHz, 30 000 to 500 000 eh-pairs) Focus:  = 3 µm (+ tails) Readout: 2 strips + 1 rearcontact MiteqAM-1309 currentamplifiers Tektronixoscilloscope, 2.5 GHz bandwidth Neighbourstrips on ground (via 50 W) Charge Q calculatedoffline: Q = ∫I(t) dt Currentsignal I(t) laser al al n type p+ p+ Si02 Si02 Si02 Charge collection close to the Si-Si02 interface of silicon strip sensors

  6. Accumulationlayerandelectricfield (simulation) Electronaccumulationlayer 1 MGyirradiation (surfacedamage) Nox = 2 1012 cm-2 , Isurf = 6.4 µA cm-2 Electronaccumulationlayerpresent electrons leaving 2 1012/cm2 200 V ∆ • Electronlosses ! b.c.:  = 0 • Influencestheweighting potential w, j • Calculatew, junderbias: readoutstrip j: 0 V otherstrips: 0 V rearside: 200 V read out strip j: 1 V otherstrips: 0 V rearside: 200 V w,j= also see Hamel, Julien NIMA 597(2008), 207 Charge collection close to the Si-Si02 interface of silicon strip sensors

  7. Weighting potential (simulation) readout j Electronaccumulation 1 MGyirradiation (surfacedamage) Nox = 2 1012 cm-2 , Isurf = 6.4 µA cm-2 Electronaccumulationlayerpresent electrons leaving 2 1012/cm2 200 V 2 1012/cm2 200 V ( µm ) • Influencestheweighting potential w, j • Calculatew, junderbias: readoutstrip j: 0 V otherstrips: 0 V rearside: 200 V read out strip j: 1 V otherstrips: 0 V rearside: 200 V w,j= also see Hamel, Julien NIMA 597(2008), 207 Charge collection close to the Si-Si02 interface of silicon strip sensors

  8. Weighting potential andinducedcurrent Charge carriers (q) driftin theelectricfield: vdr = µ E Inducedcurrent: Ij = q Ew,j· vdr , Collectedcharge : Qj = ∫Ijdt 12 µm ∫ I dt ~ 70 000 e nolosses Ew, j = w, j readout j 38µm laser 12µm laser ∆ Weighting potential 38 µm h h nolosses e e ∫ I dt ~ 0 Charge collection close to the Si-Si02 interface of silicon strip sensors

  9. Weighting potential andinducedcurrent Charge carriers (q) driftin theelectricfield: vdr = µ E Inducedcurrent: Ij = q Ew,j· vdr , Collectedcharge : Qj = ∫Ijdt 12 µm electronlosses (~97 %) nolosses Ew, j = w, j readout j 38µm laser 12µm laser ∆ Weighting potential 38 µm h h e e nolosses electronlosses (~97 %) Charge collection close to the Si-Si02 interface of silicon strip sensors

  10. Weighting potential andinducedcurrent 12 µm Charge carriers (q) driftin theelectricfield: vdr = µ E Inducedcurrent: Ij = q Ew,j· vdr , Collectedcharge : Qj = ∫Ijdt electronlosses (~97 %) Ew, j = w, j nolosses Weighting potential, rear h e ∆ 38 µm electronlosses (~97 %) nolosses readout j Charge collection close to the Si-Si02 interface of silicon strip sensors

  11. Collectedcharge vs. laserposition NL Rear Assumptions: w = constataccumulationlayer, linear else Holes: collectedatcloseststrip Light profile: gaussianwiths=2 µm L R Model Data 0 Gy, humid 0 Gy, driedat500 V laser 1 MGy, driedat 0 V Strip L strip R laserposition [µm] + hole diffusion Fit results 1 MGydriedat 500Vhumid electr. 1k 35k33k holes 29k 7k31k acclayer 38 µm 30 µm- Charge collection close to the Si-Si02 interface of silicon strip sensors

  12. Collectedcharge vs. laserposition NL Rear Assumptions: w = constataccumulationlayer, linear else Holes: collectedatcloseststrip Light profile: gaussianwiths=2 µm L R Data Model laser Strip L strip R laserposition [µm] readout Fit results 1 MGydriedat 500Vhumid electr. 1k 35k33k holes 29k 7k31k acclayer 38 µm 30 µm- Charge collection close to the Si-Si02 interface of silicon strip sensors

  13. Collectedcharge vs. laserposition NL Rear Assumptions: w = constataccumulationlayer, linear else Holes: collectedatcloseststrip Light profile: gaussianwiths=2 µm L R Data Model laser Strip L strip R laserposition [µm] Readout: rearcontact Fit results 1 MGydriedat 500Vhumid electr. 1k 35k33k holes 29k 7k31k acclayer 38 µm 30 µm- Charge collection close to the Si-Si02 interface of silicon strip sensors

  14. Results on humidityandbiashistory humid: steadystate* reached after < 5 min dry: steadystate* reached after >> 1 hour (hoursordays) ( time constantsdepend on manyparameters ) same steadystatefor all humiditiesandbiashistories! * steadystate in respecttochargelossbehavior Charge collection close to the Si-Si02 interface of silicon strip sensors

  15. Results on humidityandbiashistory humid: steadystate* reached after < 5 min dry: steadystate* reached after >> 1 hour (hoursordays) ( time constantsdepend on manyparameters ) same steadystatefor all humiditiesandbiashistories! Time dependent surface charges ? Danglingbonds ? * steadystate in respecttochargelossbehavior Charge collection close to the Si-Si02 interface of silicon strip sensors

  16. Summary andconclusions Charge collection close to the Si-Si02 interface was investigated in TCT setup and described succesfully by model. Significantlossesofelectronsand / orholesobserved. Charge losses depend on applied voltage, humidity, bias history andirradiation. Charge collection close to the Si-Si02 interface of silicon strip sensors

  17. Outlook: Saturation ofelectronlosses burstmodeoperation (20 shots) 20 shots, seperatedby 12.5 ns 1 mslater: next 20 shots electronlossesdissapear* * forlatershots • methodtoestimatethe maximal amountofelectronlosses in thegap • andpotentiallydeptrapping time Charge collection close to the Si-Si02 interface of silicon strip sensors

  18. Charge collection close to the Si-Si02 interface of silicon strip sensors

  19. Saturation ofelectronlosses burstmodeoperation (20 shots) 20 shots, seperatedby 12.5 ns 1 mslater: next 20 shots electrons holes Charge collection close to the Si-Si02 interface of silicon strip sensors

  20. Collectedchargeforcarrierlosses Fullchargecollection: Collection: holesatstrip L, electronsatrearside QL = #holes·qo = 3 qo Qrear= - 3 qo QR,NL,NR = 0 Charge losses(not collectedat end ofintegration time): Qind,j = ± q · w, j ( final position) QL < 3 |Qrear| < 3 QR,NL,NR > 0 for hole losses < 0 forelectronlosses Laser electron hole Charge collection close to the Si-Si02 interface of silicon strip sensors

  21. Collectedchargeforcarrierlosses Fullchargecollection: Collection: holesatstrip L, electronsatrearside QL = #holes·qo = 3 qo Qrear= - 3 qo QR,NL,NR = 0 Charge losses(not collectedat end ofintegration time): Qind,j = ± q · w, j ( final position) QL < 3 |Qrear| < 3 QR,NL,NR > 0 for hole losses < 0 forelectronlosses Qind 0 3 0 -3 Laser electron hole Charge collection close to the Si-Si02 interface of silicon strip sensors

  22. Collectedchargeforcarrierlosses Fullchargecollection: Collection: holesatstrip L, electronsatrearside QL = #holes·qo = 3 qo Qrear= - 3 qo QR,NL,NR = 0 Charge losses(not collectedat end ofintegration time): Qind,j = ± q · w, j ( final position) QL < 3 |Qrear| < 3 QR,NL,NR> 0 for hole losses < 0 forelectronlosses Qind 0.05 2.4 0.3 -2.9 Laser electron hole Charge collection close to the Si-Si02 interface of silicon strip sensors

  23. Collectedchargeforcarrierlosses Fullchargecollection: Collection: holesatstrip L, electronsatrearside QL = #holes·qo = 3 qo Qrear= - 3 qo QR,NL,NR = 0 Charge losses(not collectedat end ofintegration time): Qind,j = ± q · w, j ( final position) QL < 3 |Qrear| < 3 QR,NL,NR > 0 for hole losses < 0 forelectronlosses Qind * -0.05 2.6 -0.3 -2.1 Laser electron hole Charge collection close to the Si-Si02 interface of silicon strip sensors

  24. Boundaryconditions ~ humid ? boundaryconditions: constant potential: f = 0 V (Dirichlet) zeroelectricfieldcomponent: Ey = 0 (Neumann) ~ ifdriedat 0 V ? FelDirichletb.c. Fel Neumann b.c. + - - + Charge collection close to the Si-Si02 interface of silicon strip sensors

  25. Charge collection close to the Si-Si02 interface of silicon strip sensors

  26. Time dependence after 1 MGy Charge collection close to the Si-Si02 interface of silicon strip sensors

  27. 200 V, 1 MGy, driedat 0 V Charge collection close to the Si-Si02 interface of silicon strip sensors

  28. Messablauf für Elektronenverluste n-Typ Messablauf: Sensor getrocknet bei 0 V → 200 V Was passiert im Detektor? 0 V : Oxidladungen kompensiert durch freie Ladungsträger 200 V : Oxidladungen unzureichend kompensiert freie Ladungsträger (Elektronen) + + + - - - - freie Ladungsträger (Elektronen) Charge collection close to the Si-Si02 interface of silicon strip sensors

  29. Messablauf für Elektronenverluste Messablauf: Sensor getrocknet bei 0 V → 200 V Was passiert im Detektor? 0 V : Oxidladungen kompensiert durch freie Ladungsträger 200 V : Oxidladungen unzureichend kompensiert Charge collection close to the Si-Si02 interface of silicon strip sensors

  30. Übersicht der Ladungsverluste nonirradiated after 1 MGyphotons driedat 500 V Hole losses driedat 500 V humid, steadystate 6 h humid Electronlosses Electronlosses driedat 0 V dried0 V Charge collection close to the Si-Si02 interface of silicon strip sensors

  31. Measuredsignalcomparedtocalculation Free parameters: numberofelectrons numberofholes diffusionofholes:sdiff stripposition accumulationlayerwidth Fixed parameters: light profiles1=3µm + tailss2=9µm fN=0.35, fNN =0.05, frear =0.06 stripwidth = 12 µm Charge collection close to the Si-Si02 interface of silicon strip sensors

  32. Measuredsignalcomparedtocalculation measurementand fit Free parameters: numberofelectrons numberofholes diffusionofholes:sdiff stripposition accumulationlayerwidth Fixed parameters: light profiles1=3µm + tailss2=9µm fN=0.35, fNN =0.05, frear =0.06 stripwidth = 12 µm read out strip 1 MGydriedat 500Vhumid electr. 1k 35k33k holes 29k 7k31k acclayer 38 µm 30 µm- rearside Charge collection close to the Si-Si02 interface of silicon strip sensors

More Related