1 / 22

A comparative study of mixed irradiated silicon strip sensors

A comparative study of mixed irradiated silicon strip sensors 19 th RD50 Workshop 21.11 . – 23.11.2011. Florian Petry , Robert Eber T. Barvich , F. Bögelspacher , W. de Boer, A. Dierlamm , A. Kornmayer , Th. Müller, P. Steck. Ingredients for the study. Introduction Sensors

kiril
Download Presentation

A comparative study of mixed irradiated silicon strip sensors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A comparative study of mixed irradiated silicon strip sensors 19th RD50 Workshop 21.11. – 23.11.2011 Florian Petry, Robert Eber T. Barvich, F. Bögelspacher, W. de Boer, A. Dierlamm, A. Kornmayer, Th. Müller, P. Steck

  2. Ingredientsforthestudy • Introduction • Sensors • Mixed irradiationscheme • Annealingprocedure • ALiBaVameasuremets • Results • Charge collection • Signal tonoiseratio • Leakagecurrent • Summary

  3. Sensor overview • Sensor thickness: 300µm • 5 sensorsofeach material

  4. Irradiation • Mixed irradiationwithprotonsandneutrons • Chose 5 fluencemixturescorrespondingto 5 different radii in the CMS Tracker after 3000fb-1 • Irradiation with Protons in Karlsuhe • ZAG: Cyclotron, 23MeV protons • Irradiation withneutronsin Louvain-la-Neuve • Neutron generationbyshootingdeuterons on Betarget • 1 steponlyneutronirradiation

  5. Annealing • Logarithmicannealingstepstoobserve • shortterm (beneficial) annealing • longterm (reverse) annealing M.Moll, phdthesis, Hamburg, 1999

  6. Parameterisationofchargecollection Beneficialannealing Reverse annealing Stabledamage

  7. Measurement • Measurement Setup: 2 ALiBaVastations in Karlsruhe • 90Sr source • Signal • Signal tonoiseratio • Leakagecurrent • Temperature: -20°C (-30°C) • Voltage 0V – 1000V • Cuts • Seed: S/N > 5 • Neighbour: S/N > 2 • Total error on measurements: 2.5% • Error on irradiatedfluence > 10% The smallALiBaVastation Sensor Scintillator DB HV Pre-cooling

  8. Measurement Results Parameters T = -20°C V = 900V

  9. Charge collection • P-type materialscollectmorechargethan n-type materials • FZ-n • showshighestdependence on annealing time • Large drop in chargecollection after 10d@RT (reverseannealing) • Onlysmalldependenceofchargecollection on annealing time forothermaterials Increasingfluence P N P N

  10. Charge collection • 1.8*1015neq/cm2 • FZ-p showslargestchargecollection • Charge multiplicationfor large annealing (charge > 24000 e-) • MCz: almostnodependence on annealingtime • 1.2*1016neq/cm2 • FZ-n: Nosignalathighestfluencefor all annealingsteps • FZ-p: rise in signalforlongannealingtime • MCz-p sensordidn‘tworkforfirstannealingstep • MCz-n: nosignalat T= -20°C Increasingfluence MCz-n T= -30°C

  11. Charge Collectionoverview Max: 15k/40k Max: 24k Max: 22k Max: 10k MCz-n T=-30°C No Signal at T=-20°C

  12. Signal to Noise P N 1. All quitegood 3. p isbetterthan n 2. Same range FZ-n drops out 4. Lowerlimit, seedcut > 5

  13. Charge multiplication • Signal increases after Annealingof >100d@RT • Signal tonoiseratiodoesn‘tdecrease • Large increaseofleakagecurrent

  14. Charge collection / multiplication • Landau-Gauß-Fit broadensverymuch • Peak isshiftedtohighervalues • Not a MIP signalanymore usualdistribution

  15. Charge collection / multiplication • MPV cannotbedeterminedverywell FZ-p + MCz-p T=-20°C MCz-n T=-30°C

  16. Charge Collection / Signal to Noise Summary 15d 337d Charge multiplication CC S/N T= -30°C MCz-n

  17. LeakageCurrentSummary 15d 337d Charge multiplication

  18. Neutron only / mixedirradiation N-type • Mixed irradiationF = 4.6*1014neq/cm2 • F(p) = 0.8*1014neq/cm2 • F(n) = 3.8*1014neq/cm2 • Neutron onlyirradiation • F(n) = 4.0*1014neq/cm2 MCz FZ • Neutron onlyirradiation: • FZ-n hassmallersignalthanMCz-nsimulatedby M. Huhtinen NIMA 491, 194-215, 2002 • Mixed irradiation: • Noimprovement in CC due tomixedirradiationG. Casseet al. Vertex2008:036, 2008

  19. Summary • P-type materialsshowedhigherchargecollectionandsignaltonoise • FZ-p performancemostinteresting • Charge multiplicationonlyseenwith FZ-p F > 1*1015neq/cm2, A > 100d@RTManufacturerMicron • Highestleakagecurrent • FZ-n showedlargestdependence on annealing time • Not usableat high fluences • Charge collectionofMCzmaterialsdoesnot annealverymuch • MCz-n is not workingat T= -20°C at F=1.2*1016neq/cm2 • Additional differencesbetween n-type and p-type materials due tomanufacturer? • Comparetootherstudies: Charge multiplicationstudy, HPK

  20. Thanksforyourattention • Diplomathesisof F. Petry (IEKP-KA/2011-27) • Will bepublishedsoon: • http://www-ekp.physik.uni-karlsruhe.de/pub/web/thesis/iekp-ka2011-27.pdf

  21. Backup

  22. Prof. Max Mustermann - Title

More Related