820 likes | 832 Views
Explore the chemistry of air pollutants like CO, SO2, NO2, O3, PM10, hydrocarbons, and combustion processes. Learn about atmospheric processes, incomplete combustion, nitrous oxide cycle, particle formation, and control implications. Understand how particles originate, their chemical processes, and deposition.
E N D
Air Pollution Chemistry Introduction
Air Pollutants • Carbon monoxide (CO) - Primary • Sulfur dioxide (SO2) - Primary • Nitrogen dioxide (NO2) - Primary and Secondary • Ozone (O3) - Secondary • Particulate matter < 10 um in diameter (PM10) - Primary and Secondary
Atmospheric Processes • Emission • Dispersion • Wind • Inversion • Transport • Transformation • Deposition
Hydrocarbon Combustion • Ideally Fuel + Air => Products HC+O2 => CO2+H2O • Too Simple
Methane (CH4) Combustion • CH4 +O2+Inert (N2 or Ar) • Requires over 170 reactions and over 30 compounds • If add NOx chemistry • Requires over 275 reactions and over 45 compounds
Incomplete Combustion • Intermediate Compound Emissions • Formaldehyde and Acetylene • More toxic or reactive • Precursors to secondary pollutants (e.g., ozone and particulate)
Oxygenated Compounds • Ethers -- R-O-R CH3-O-C(CH3)3 = MTBE • Multifunctional Carbonyls • More than one oxygenated functional group on same molecule
Outline • Ozone Formation • Hydrocarbon Reactivity • Particulate Matter Formation • Conclusions
Nitrogen Cycle Only a few minutes per cycle: O + O2 + M O3 + M (fast) M is the “third body”, primarily N2 and O2 NO2 + hv NO + O (k1) hv is ultraviolet radiation O3 + NO NO2 + O2 (k3) ozone “scavenging” reaction
Photostationary State [O3] = {k1 / k3} . {[NO2] / [NO]} NOx emissions < 90% NO. [O3] = {10} . {1 / 10} [O3] = 1 ppb
Fast Radical Transfer Reaction • Oxidizes NO to NO2, allowing O3 to build up. RO2 + NO RO + NO2 • R is any hydrocarbon fragment. 100’s of hydrocarbons 1000’s of reactions • Takes hours to affect PSS.
Hydrocarbon Oxidation Cycle The hydroxyl radical begins cycle, OH + HCHO H2O + HCO HCO + O2 HO2 + CO HO2 + NO NO2 + OH and is returned at end of cycle.
Sources of Radicals Formaldehyde photolysis HCHO + hv + O2 HO2 + HCO Ozone photolysis O3 + hv + H20 2 OH + O2 Nitrous acid photolysis HONO + hv OH + NO
NOx and Radical Sink Reaction OH + NO2 HNO3 (nitric acid) • Limits ozone formation. • Increases acid deposition and particulate matter.
Typical Pattern of O3 Formation • Before sunrise • No NO2 photolysis, radicals, or O3 • During the day • Radicals created, convert NO to NO2 • NO2/NO ratio increases, O3 builds up • NO2 decreases via sink reaction, limiting O3 • After sunset • Fresh NO emissions scavenge O3
70% 60% 50% 40% 30% 20% 10% 0% 00-08 08-12 12-16 16-20 20-00 Alkenes Aromatics Alkanes Diurnal Variation in Atmospheric CompositionGlendora, CA -- August 11-21, 1986
Control Implications • Role of NOx • Required for ozone formation • Shorter lifetime than hydrocarbons • Emissions inhibit O3 near sources • Emissions limit O3 downwind • Role of hydrocarbons • Greatly enhance the build-up of O3 from NOx
Control Implications (Cont’d) • Near NOx source areas • Hydrocarbon control required • Areas affected by transport • NOx control generally required • Large urban areas • Control both NOx and hydrocarbons
Particulate Matter Formation • NOx, SOx + OH to acids • Also in fog and clouds • NH3, salts + acids to nitrates, sulfates • Organic aerosols • Large alkenes + O3 • Large alkanes + OH • Aromatics + OH
PARTICLES IN THE ATMOSPHERE • ORIGINS, EMISSIONS, & CHEMISTRY • PHYSICAL PROPERTIES • DEPOSITION AND TRANSPORT • “ACID RAIN” • HAZE & VISIBILITY • CONCENTRATION DYNAMICS
Particles Origins • Primary Particles • Mechanical Processes • Chemical Processes • Weathering • Combustion • Secondary Particles • Precursors & Catalysts • Reaction Rates • Growth and Volatility
Primary Particles • Combustion & Process Venting • Open Combustion • “Stack” & Tailpipe Emissions • Urban & Industrial • Cutting, Sand Blasting, Abrasion (Tires, Brakes, etc.) • Natural • Soil, Vegetation, Evaporation, Fire, Volcanoes, etc.
Combustion & Process Venting • Combustion • Carbon - Organic & Elemental (Fuels) • “Ash” - “Inert Contaminants” (Metals, Soil, etc.) • Vapors • Coking & Cooking (Organics, sulfur, etc.) • Metals (Foundries, Welding, etc.) • Non-Metallic (Fluxes, Salts, etc.)
“Fugitive” Material • Soil • Roads • Material Handling and Storage • Blasting & Grinding • Drift
Secondary Particles • Oxidation Pathways • Gas Phase Conversion • Aqueous Conversion • Catalysis • Particle Growth and Decay • Nucleation • Condensation and Accumulation • Vaporization
Sulfate Aerosol Formation • Gas Phase • Oxidation(OH, O2) of H2S & SO2 • O3 Catalysis • Aqueous Conversion • Oxidation (OH) & Catalysis (Mn)
Natural Sulfate Aerosols • Sulfuric Acid H2SO4 • Organo - Sulfate • MgSO4 - Sea Salt (6%) • CaSO4 - Gypsum • Ammonium Compounds • Ammonium Sulfate (NH4)2SO4 • Ammonium Bisulfate (NH4)HSO4
Anthropogenic Sulfate Aerosols • Sulfuric Acid H2SO4 • Organo - Sulfate • CaSO4 - Scrubbers, Fugitives • Zn, Fe, Cu SO4 - Smelting, etc. • Ammonium Compounds • Ammonium Sulfate (NH4)2SO4 • Ammonium Bisulfate (NH4)HSO4
Nitrate Aerosols • Reversible Reactions • T, RH, Pp (NH3, HNO3) • Generally Winter - Cold, Wet • Ammonia Forcing (Chino example) • Reactions (e.g. Sea Salt) • Growth on Pre-existing Particles
Secondary Hydrocarbons • Phase Determinants • Concentration • Temperature • O3 Catalysis • Episodic in Ozone Season
Hygroscopic Aerosols • Growth and Humidity • Hysteresis 2 Drying Relative Diameter 1 Wetting 40 50 60 70 80 90 RH%
1 m m P a r t i c l e 5 m P a r t i c l e m Differential DepositionIdealized - Dry, Steady State Nitric 1.0 0.8 Acid 0.6 Remaining Fraction 0.4 Vapor 0.2 0.0 0 24 48 72 96 120 Hours
Evolving Size Distributions • Nucleation • Coagulation • Deposition
Size - Origin Relationships • Primary • Mechanical Particles • Weathering Particles • Combustion Particles • Secondary • Gas-Phase Nucleation • Dry Particle Growth • Aqueous Conversion
Clouds, Fog & Rain • Stimulated Condensation • Selective Rain-out • Cloud Scavenging • Inertial Scavenging • Evaporation & Residual Aerosol • Grand Canyon Example
Aerosol History • Aerosol - Emission Relationships are Non-Linear • Air Mass History Determines Aerosol Properties
1 m m P a r t i c l e 5 m P a r t i c l e m Deposition • Deposition “Velocity” • Size & Chemistry Dependent • Meteorology • Particle “Half-Life” Nitric 1.0 0.8 Acid 0.6 Remaining Fraction 0.4 Vapor 0.2 0.0 0 24 48 72 96 120 Hours
Transport • Source Areas & Receptors • Prevailing Winds • Mixing Height & Topography • Distance, Time, and Aerosol Evolution • Secondary Formation / Dissociation • Dispersion • Deposition
Acid Formation • Sulfuric Acid • Nitric Acid • Organic Acids
Acid Transport & Deposition • Acid Rain • Local or Upwind Emissions • Cloud Scavenging and Precipitation • Acid Fog • Dry Deposition • Upwind Emissions • Wet or Dry Oxidation • Concentration and Residence
California Acid Deposition Monitoring Program 100 km Precipitation Sites Alpine Wet Sites Dry Deposition Sites