530 likes | 772 Views
SISTEMA DE CONTROL DE UNA TOLVA CON CINTA TRANSPORTADORA DE ARENA. SISTEMA DE CONTROL DE UNA TOLVA CON CINTA TRANSPORTADORA DE ARENA. SISTEMA DE CONTROL DE UNA TOLVA CON CINTA TRANSPORTADORA DE ARENA. SISTEMA DE CONTROL DE UNA TOLVA CON CINTA TRANSPORTADORA DE ARENA.
E N D
SISTEMA DE CONTROL DE UNA TOLVA CON CINTA TRANSPORTADORA DE ARENA ICAI 2002-2003
SISTEMA DE CONTROL DE UNA TOLVA CON CINTA TRANSPORTADORA DE ARENA ICAI 2002-2003
SISTEMA DE CONTROL DE UNA TOLVA CON CINTA TRANSPORTADORA DE ARENA ICAI 2002-2003
SISTEMA DE CONTROL DE UNA TOLVA CON CINTA TRANSPORTADORA DE ARENA ICAI 2002-2003
SISTEMA DE CONTROL DE UNA TOLVA CON CINTA TRANSPORTADORA DE ARENA y sensor y’ ICAI 2002-2003
SISTEMA DE CONTROL DE UNA TOLVA CON CINTA TRANSPORTADORA DE ARENA r u Regulador y sensor y’ ICAI 2002-2003
SISTEMA DE CONTROL DE UNA TOLVA CON CINTA TRANSPORTADORA DE ARENA r u Regulador y sensor y’ DIAGRAMA DE BLOQUES Retraso temporal de r segundos Control proporcional d - y x e u r -rs K e - y’ H Realimentación ICAI 2002-2003
VARIABLES: r(t) referencia . (valor deseado) (1 V equivalente a 1 Kg/cm2)
VARIABLES: r(t) referencia . (valor deseado) (1 V equivalente a 1 Kg/cm2) e(t) error. (diferencia entre referencia y realimentación)
VARIABLES: r(t) referencia . (valor deseado) (1 V equivalente a 1 Kg/cm2) e(t) error. (diferencia entre referencia y realimentación) u(t) mando. (señal de actuación sobre la válvula)
VARIABLES: r(t) referencia . (valor deseado) (1 V equivalente a 1 Kg/cm2) e(t) error. (diferencia entre referencia y realimentación) u(t) mando. (señal de actuación sobre la válvula) d(t) perturbación. (humedad, defectos de tolva)(+/- 0.2)
VARIABLES: r(t) referencia . (valor deseado) (1 V equivalente a 1 Kg/cm2) e(t) error. (diferencia entre referencia y realimentación) u(t) mando. (señal de actuación sobre la válvula) d(t) perturbación. (humedad, defectos de tolva)(+/- 0.2) x(t) cantidad de arena a través de la válvula
VARIABLES: r(t) referencia . (valor deseado) (1 V equivalente a 1 Kg/cm2) e(t) error. (diferencia entre referencia y realimentación) u(t) mando. (señal de actuación sobre la válvula) d(t) perturbación. (humedad, defectos de tolva)(+/- 0.2) x(t) cantidad de arena a través de la válvula y(t) salida. (cantidad de arena en Kg/cm2 en pto de medida)
VARIABLES: r(t) referencia . (valor deseado) (1 V equivalente a 1 Kg/cm2) e(t) error. (diferencia entre referencia y realimentación) u(t) mando. (señal de actuación sobre la válvula) d(t) perturbación. (humedad, defectos de tolva)(+/- 0.2) x(t) cantidad de arena a través de la válvula y(t) salida. (cantidad de arena en Kg/cm2 en pto de medida) y’(t) realimentación (sensor: 1V equivale a 1 Kg/cm2)
VARIABLES: r(t) referencia . (valor deseado) (1 V equivalente a 1 Kg/cm2) e(t) error. (diferencia entre referencia y realimentación) u(t) mando. (señal de actuación sobre la válvula) d(t) perturbación. (humedad, defectos de tolva)(+/- 0.2) x(t) cantidad de arena a través de la válvula y(t) salida. (cantidad de arena en Kg/cm2 en pto de medida) y’(t) realimentación (sensor: 1V equivale a 1 Kg/cm2) ECUACIONES: e(t) = r(t) - y’(t)
VARIABLES: r(t) referencia . (valor deseado) (1 V equivalente a 1 Kg/cm2) e(t) error. (diferencia entre referencia y realimentación) u(t) mando. (señal de actuación sobre la válvula) d(t) perturbación. (humedad, defectos de tolva)(+/- 0.2) x(t) cantidad de arena a través de la válvula y(t) salida. (cantidad de arena en Kg/cm2 en pto de medida) y’(t) realimentación (sensor: 1V equivale a 1 Kg/cm2) ECUACIONES: e(t) = r(t) - y’(t) u(t) = K.e(t) (control proporcional)
VARIABLES: r(t) referencia . (valor deseado) (1 V equivalente a 1 Kg/cm2) e(t) error. (diferencia entre referencia y realimentación) u(t) mando. (señal de actuación sobre la válvula) d(t) perturbación. (humedad, defectos de tolva)(+/- 0.2) x(t) cantidad de arena a través de la válvula y(t) salida. (cantidad de arena en Kg/cm2 en pto de medida) y’(t) realimentación (sensor: 1V equivale a 1 Kg/cm2) ECUACIONES: e(t) = r(t) - y’(t) u(t) = K.e(t) (control proporcional) x(t) = u(t) - d(t)
VARIABLES: r(t) referencia . (valor deseado) (1 V equivalente a 1 Kg/cm2) e(t) error. (diferencia entre referencia y realimentación) u(t) mando. (señal de actuación sobre la válvula) d(t) perturbación. (humedad, defectos de tolva)(+/- 0.2) x(t) cantidad de arena a través de la válvula y(t) salida. (cantidad de arena en Kg/cm2 en pto de medida) y’(t) realimentación (sensor: 1V equivale a 1 Kg/cm2) ECUACIONES: e(t) = r(t) - y’(t) u(t) = K.e(t) (control proporcional) x(t) = u(t) - d(t) y(t) = x(t - r)
VARIABLES: r(t) referencia . (valor deseado) (1 V equivalente a 1 Kg/cm2) e(t) error. (diferencia entre referencia y realimentación) u(t) mando. (señal de actuación sobre la válvula) d(t) perturbación. (humedad, defectos de tolva)(+/- 0.2) x(t) cantidad de arena a través de la válvula y(t) salida. (cantidad de arena en Kg/cm2 en pto de medida) y’(t) realimentación (sensor: 1V equivale a 1 Kg/cm2) ECUACIONES: e(t) = r(t) - y’(t) u(t) = K.e(t) (control proporcional) x(t) = u(t) - d(t) y(t) = x(t - r) y’(t) = H.y(t)
ANALISIS ESTATICO: e(t) = r(t) - y’(t) u(t) = K.e(t) x(t) = u(t) - d(t) y(t) = x(t - r) y’(t) = H.y(t) ICAI 2002-2003
ANALISIS ESTATICO: e(t) = r(t) - y’(t) u(t) = K.e(t) x(t) = u(t) - d(t) y(t) = x(t - r) = x(t) y’(t) = H.y(t) ICAI 2002-2003
ANALISIS ESTATICO: e(t) = r(t) - y’(t) u(t) = K.e(t) x(t) = u(t) - d(t) y(t) = x(t - r) = x(t) y’(t) = H.y(t) y=x=u-d=K.e-d=K.(r-y’)-d=K.(r-H.y)-d=K.r-K.H.y-d ICAI 2002-2003
ANALISIS ESTATICO: e(t) = r(t) - y’(t) u(t) = K.e(t) x(t) = u(t) - d(t) y(t) = x(t - r) = x(t) y’(t) = H.y(t) y=x=u-d=K.e-d=K.(r-y’)-d=K.(r-H.y)-d=K.r-K.H.y-d K 1 y = .r - .d 1 + K.H 1 + K.H ICAI 2002-2003
EJEMPLO DE ANALISIS ESTATICO (Régimen permanente) r = 1 d = 0 H = 1 ICAI 2002-2003
EJEMPLO DE ANALISIS ESTATICO (Régimen permanente) r = 1 d = 0 H = 1 K =1/2 y = 1/3 e = 2/3 u = 1/3 x = 1/3 y’ = 1/3 ICAI 2002-2003
EJEMPLO DE ANALISIS ESTATICO (Régimen permanente) r = 1 d = 0 H = 1 K =1/2 y = 1/3 e = 2/3 u = 1/3 x = 1/3 y’ = 1/3 K =1 y = 1/2 e = 1/2 u = 1/2 x = 1/2 y’ = 1/2 ICAI 2002-2003
EJEMPLO DE ANALISIS ESTATICO (Régimen permanente) r = 1 d = 0 H = 1 K =1/2 y = 1/3 e = 2/3 u = 1/3 x = 1/3 y’ = 1/3 K =1 y = 1/2 e = 1/2 u = 1/2 x = 1/2 y’ = 1/2 K =2 y = 2/3 e = 1/3 u = 2/3 x = 2/3 y’ = 2/3 ICAI 2002-2003
EJEMPLO DE ANALISIS ESTATICO (Régimen permanente) r = 1 d = 0 H = 1 K =1/2 y = 1/3 e = 2/3 u = 1/3 x = 1/3 y’ = 1/3 K =1 y = 1/2 e = 1/2 u = 1/2 x = 1/2 y’ = 1/2 K =2 y = 2/3 e = 1/3 u = 2/3 x = 2/3 y’ = 2/3 K =10 y =10/11 e = 1/11 u = 10/11 x = 10/11 y’ = 10/11 ICAI 2002-2003
EJEMPLO DE ANALISIS ESTATICO (Régimen permanente) r = 1 d = 0 H = 1 K =1/2 y = 1/3 e = 2/3 u = 1/3 x = 1/3 y’ = 1/3 K =1 y = 1/2 e = 1/2 u = 1/2 x = 1/2 y’ = 1/2 K =2 y = 2/3 e = 1/3 u = 2/3 x = 2/3 y’ = 2/3 K =10 y =10/11 e = 1/11 u = 10/11 x = 10/11 y’ = 10/11 Mayor valor de K menor error en régimen permanente (siempre hay error) ICAI 2002-2003
EJEMPLO DE ANALISIS ESTATICO (Régimen permanente) r = 1 d = 0 H = 1 K =1/2 y = 1/3 e = 2/3 u = 1/3 x = 1/3 y’ = 1/3 K =1 y = 1/2 e = 1/2 u = 1/2 x = 1/2 y’ = 1/2 K =2 y = 2/3 e = 1/3 u = 2/3 x = 2/3 y’ = 2/3 K =10 y =10/11 e = 1/11 u = 10/11 x = 10/11 y’ = 10/11 Mayor valor de K menor error en régimen permanente (siempre hay error) Mayor valor de K menor efecto de la perturbación ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1/2 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1/2.e(t) x(t) = u(t) y(t) = x(t-r) ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1/2 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1/2.e(t) x(t) = u(t) y(t) = x(t-r) y r t e t u t ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1/2 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1/2.e(t) x(t) = u(t) y(t) = x(t-r) y 0 r t e 1 t u 1/2 t ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1/2 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1/2.e(t) x(t) = u(t) y(t) = x(t-r) y 1/2 0 r t e 1 1/2 t u 1/2 1/4 t ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1/2 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1/2.e(t) x(t) = u(t) y(t) = x(t-r) y 1/2 1/4 0 r t e 1 3/4 1/2 t u 1/2 3/8 1/4 t ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1/2 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1/2.e(t) x(t) = u(t) y(t) = x(t-r) y 1/2 3/8 1/4 0 r t e 1 3/4 5/8 1/2 t u 1/2 5/16 3/8 1/4 t ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1/2 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1/2.e(t) x(t) = u(t) y(t) = x(t-r) y 1/2 3/8 1/4 1/3 0 r t e 1 2/3 3/4 5/8 1/2 t u 1/2 5/16 3/8 1/3 1/4 t ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1.e(t) x(t) = u(t) y(t) = x(t-r) ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1.e(t) x(t) = u(t) y(t) = x(t-r) y 0 r t e 1 t u 1 t ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1.e(t) x(t) = u(t) y(t) = x(t-r) y 1 0 r t e 1 0 t u 1 0 t ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1.e(t) x(t) = u(t) y(t) = x(t-r) y 1 0 0 r t e 1 1 0 t u 1 1 0 t ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1.e(t) x(t) = u(t) y(t) = x(t-r) y 1 1 0 0 r t e 1 1 0 0 t u 1 1 0 0 t ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 1 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 1.e(t) x(t) = u(t) y(t) = x(t-r) y 1 1 1 0 0 0 r t e 1 1 1 0 0 0 t u 1 1 1 0 0 0 t ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 2 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 2.e(t) x(t) = u(t) y(t) = x(t-r) ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 2 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 2.e(t) x(t) = u(t) y(t) = x(t-r) y e 1 r 0 t t u 2 t ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 2 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 2.e(t) x(t) = u(t) y(t) = x(t-r) y e 2 1 r 0 t t -1 u 2 t -2 ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 2 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 2.e(t) x(t) = u(t) y(t) = x(t-r) y e 3 2 1 r 0 t t -2 -1 6 u 2 t -2 ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO r = 1 d = 0 H = 1 y(0) = 0 K = 2 y’(t) = y(t) e(t) = 1- y’(t) u(t) = 2.e(t) x(t) = u(t) y(t) = x(t-r) 6 y e 3 2 1 r 0 t t -2 -1 -5 6 u 2 t -2 ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO K = 1/2 sistema estable K = 1 sistema oscilante K= 2 sistema inestable RESUMEN Mayor valor de K menor error en régimen permanente Mayor valor de K menor efecto de la perturbación Sin embargo, si K>1 sistema inestable Problemas: sistema lento y próximo a inestabilidad ¿Elegimos K = 0.99? Regla práctica: K = 50% de valor que produce oscilación Probar con otros tipos de controladores: integración, ... ICAI 2002-2003
EJEMPLO DE ANALISIS DINAMICO CONTROL INTEGRAL r = 1 d = 0 H = 1 y(0) = 0 I = y’(t) = y(t) e(t) = 1- y’(t) u(t) = (1/I).òe(t).dt x(t) = u(t) y(t) = x(t-r) 1.5 r y 1 0.79 0 r t e 1 t u 1 t ICAI 2002-2003