170 likes | 317 Views
Static vs. Dynamic Populations in GAs for Coloring a Dynamic Graph. GECCO ’14 July 16, 2014. Cara Monical cmonica2@illinois.edu Forrest Stonedahl forreststonedahl@augustana.edu. Imagine You Want To…. Dynamic Graph Coloring. Big Question. [Jin & Branke ‘05]. Genetic Algorithm. 4. 9.
E N D
Static vs. Dynamic Populations in GAs for Coloring a Dynamic Graph GECCO ’14 July 16, 2014 Cara Monical cmonica2@illinois.edu Forrest Stonedahl forreststonedahl@augustana.edu
Big Question [Jin & Branke ‘05]
Genetic Algorithm 4 9 1 10 10 8 1 3 7 7 5 3 6 5 8 2 6 2 9 4 Pop Size: 100 Greedy Decoder Tournament, size 3 • Population of solutions • Evaluate fitness • Select fit individuals • Perform Crossover • Perform Mutation
Reproduction: OX1 & SWAP [Starkweather ‘91] 3 3 4 4 5 5 6 6 7 7 Parent 1 1 2 3 4 5 6 7 8 9 10 * * Parent 2 3 6 1 1 10 10 8 8 4 9 9 7 2 2 5 Offspring 9 2 1 10 8 Before After 1 2 3 3 4 5 5 6 6 7 8 9 10 Rate: 50% Rate: 70% • Population of solutions • Evaluate fitness • Select fit individuals • Perform Crossover • Perform Mutation
Experimental Setup 3. Dynamic Population (DGA) 1. Graph 3 0 A C A D E C C A C E D C B C A A D B A C A E A D A C C A C D B D A A D D A A D D E E E E A C C A D E E B D E D B D B D A B E B D D D E D B B E B C D C A E B B E B A C E B D E B E E C C B E D E B C B C B D E A B C A A C C E B C A C A D E B B 3 A A B E C D 3 3 E B 4 4. Static Population (SGA) 3 0 3 C D 4 2. DSATUR [Brélaz ‘79] 4 0 3 A B E C D 4 3
Experimental Setup 3. Dynamic Population (DGA) 1. Graph 6 3 0 D C D E C C D D E B D C E B E B D A E D D C D C E E B B F C D E E C A C B D A B B B F F B D B F B D F B B B B F F E E E E F E B F C C F F C C E C B B C E E D C B F C E D E F D C F F D E C E F D F E D D F E F D C F C E F D D C C B F C D B C A F E B B D E D B F C C C B B E E B D D 3 F A F F E E B B D D C C 3 3 E B 3 4. Static Population (SGA) 3 6 3 C D 3 4 2. DSATUR 0 7 3 3 3
.025 .05 .01 .0125 .0167 .2 .05 .1 .033 .025 .15 .075 .05 .0375 .03 .2 .1 .05 .04 .067
(Some) Big Answers (For this Problem & Algorithm) ≥ 1. Dynamic Problem Succession of Static Problems ≈ 2. Highly Dynamic Problem Succession of Static Problems > 3. Slightly Dynamic Problem Succession of Static Problems
Thank You Centre College Department of Computer Science and Department of Mathematics Centre College, John C. Young Program Contact Information Cara Monical University of Illinois at Urbana-Champaign Math Department cmonica2@illinois.edu Forrest Stonedahl Augustana College CS and Math Departments forreststonedahl@augustana.edu
Performance vs. Edge Density G(n,p,cv) Graphs Euclidean Graphs
Performance vs. Evolution G(n,p,cv) Graphs Euclidean Graphs