560 likes | 679 Views
FÍSICA Prof. Márcio César Colégio Heitor Garcia. ASSUNTOS ABORDADOS. Impulso Quantidade de Movimento Teorema do Impulso Sistema Isolado de Forças Princípio da Conservação da Quantidade de Movimento Colisões. Impulso.
E N D
FÍSICA Prof. Márcio César Colégio Heitor Garcia
ASSUNTOS ABORDADOS • Impulso • Quantidade de Movimento • Teorema do Impulso • Sistema Isolado de Forças • Princípio da Conservação da Quantidade de Movimento • Colisões
Impulso É a grandeza física vetorial relacionada com a força aplicada em um corpo durante um intervalo de tempo. O impulso é dado pela expressão: I = impulso (N.s); F = força (N); Dt = tempo de atuação da força F (s).
Impulso Ao empurrarmos um carro, por exemplo, quanto maior a intensidade da força e o tempo de atuação dessa força, maior será o impulso aplicado no carro. O Impulso é uma grandeza vetorial que possui a mesma direção e sentido da força aplicada.
Impulso Canhões de longo alcance possuem canos compridos. Quanto mais longo este for, maior a velocidade emergente da bala. Isso ocorre porque a força gerada pela explosão da pólvora atua no cano longo do canhão por um tempo mais prolongado. Isso aumenta o impulso aplicado na bala do canhão. O mesmo ocorre com os rifles em relação aos revólveres.
Impulso Quando a força aplicada não for constante ao longo do tempo, a intensidade do impulso pode ser calculada através da Área do gráfico F x t com o eixo do tempo, conforme a seguir.
Quantidade de Movimento Todos nós sabemos que é muito mais difícil parar um caminhão pesado do que um carro que esteja se movendo com a mesma rapidez. Isso se deve ao fato do caminhão ter mais inércia em movimento, ou seja, quantidade de movimento.
Quantidade de Movimento É a grandeza física vetorial relacionada com a massa de um corpo e sua velocidade. A quantidade de movimento, ou momento linear, é dada pela expressão: Q = quantidade de movimento (kg.m/s); m = massa (kg); v = velocidade (m/s).
Quantidade de Movimento A quantidade de movimento é uma grandeza vetorial que possui a mesma direção e sentido da velocidade. As unidades (dimensões) de Impulso e Quantidade de Movimento são equivalentes:
Teorema do Impulso Considere um corpo de massa m que se desloca em uma superfície horizontal com uma velocidade vo. Em um certo instante passa a atuar nele uma força resultante de intensidade F, durante um intervalo de tempo Dt. O impulso produzido pela força F é igual a:
Teorema do Impulso Para o mesmo intervalo de tempo, o impulso da força resultante é igual à variação da quantidade de movimento.
Sistema Isolado de Forças Considere um sistema formado por dois corpos A e B que se colidem. No sistema, as forças decorrentes de agentes externos ao sistema são chamadas de forças externas, como, por exemplo o peso P e a normal N. No sistema, a resultante dessas forças externas é nula.
Sistema Isolado de Forças Durante a interação, o corpo A exerce uma força F no corpo B e este exerce no corpo B uma força -F, de mesmo módulo e sentido oposto. As forças F e -F correspondem ao par Ação e Reação. Denomina-se sistema isolado de forças externas o sistema cuja resultante dessas forças é nula, atuando nele somente as forças internas.
Princípio da Conservação da Quantidade de Movimento Considerando um sistema isolado de forças externas: Pelo Teorema do Impulso Como • A quantidade de movimento de um sistema de corpos, isolado de forças externas, é constante.
Observações A quantidade de movimento pode permanecer constante ainda que a energia mecânica varie. Isto é, os princípios da conservação de energia e da quantidade de movimento são independentes. A quantidade de movimento dos corpos que constituem o sistema mecanicamente isolado não é necessariamente constante. O que permanece constante é a quantidade de movimento total dos sistema.
Observações Durante uma desfragmentação ou explosão o centro de massa do sistema não altera o seu comportamento.
Colisões As colisões podem ocorrer de duas maneiras distintas, dependendo do que ocorre com a energia cinética do sistema antes e depois da colisão. 1 - Colisão Elástica 2 - Colisão Inelástica
Colisão Elástica Suponha que duas esferas, A e B, colidissem de tal modo que suas energias cinéticas, antes e depois da colisão, tivessem os valores mostrados na figura a seguir.
Colisão Elástica Observe que, se calcularmos a energia cinética total do sistema, encontraremos: Antes da Colisão: EcA + EcB = 8+4 = 12j Após a Colisão: EcA + EcB = 5+7 = 12j Neste caso, a energia cinética total dos corpos que colidiram se conservou. Esse tipo de colisão, na qual, além da conservação de movimento (que sempre ocorre), há também a conservação da energia cinética, é denominada colisão elástica.
Colisão Inelástica (ou Plástica) É aquela onde a energia cinética não se conserva. Isso ocorre porque parte da energia cinética das partículas envolvidas no choque se transforma em energia térmica, sonora etc. Não se esqueça, mesmo a energia cinética não se conservando, a quantidade de movimento do sistema se conserva durante a colisão. A maioria das colisões que ocorrem na natureza é inelástica.
Colisão Perfeitamente Inelástica É aquela que, após o choque, os corpos passam a ter a mesma velocidade (movem-se juntos), tendo a maior perda possível de energia cinética do sistema. A figura a seguir exemplifica um colisão perfeitamente inelástica. Obs.: na colisão perfeitamente inelástica não se perde, necessariamente, toda a energia cinética.
Coeficiente de Restituição O coeficiente de restituição é definido como sendo a razão entre a velocidade de afastamento e a de aproximação. Se um corpo for abandonado de uma altura H e após o choque com o chão o corpo atingir a altura h, temos:
Coeficiente de Restituição O coeficiente de restituição é um número puro (grandeza adimensional), extremamente útil na classificação e equacionamento de uma colisão:
LEMBRE-SE QUE • O impulso é uma grandeza vetorial relacionada com uma força e o tempo de atuação da mesma. • Quantidade de movimento é uma grandeza vetorial que possui mesma direção e sentido do vetor velocidade. • O impulso corresponde à variação da quantidade de movimento. • Durante uma colisão (ou explosão) a quantidade de movimento do sistema permanece constante. • A quantidade de movimento pode permanecer constante ainda que a energia mecânica varie. • Após a colisão perfeitamente inelástica os corpos saem juntos.
A figura mostra dois blocos, A e B, em repouso, encostados em uma mola comprimida, de massa desprezível. Os blocos estão apoiados em uma superfície sem atrito e sua massas são 5,0kg e 7,0kg, respectivamente. Supondo que o bloco B adquira uma velocidade de 2,0m/s, qual a velocidade adquirida pelo bloco A?
Despreze todas as formas de atrito e considere que: a - inicialmente, o conjunto se encontra em repouso; b - m2 = 4 m1; c - o corpo de massa m1 é lançado horizontalmente para a esquerda, com velocidade de 12m/s. Tendo em vista o que foi apresentado, qual será a velocidade de lançamento do bloco m2?
IGUAL Ação e Reação Um automóvel de 1,0 tonelada colidiu frontalmente com um caminhão de 9,0 toneladas. A velocidade do automóvel era de 80km/h para a direita e a do caminhão, de 40km/h para a esquerda. Após a colisão, os dois veículos permaneceram juntos. 1 - DETERMINE a velocidade do conjunto caminhão e automóvel logo após a colisão. 2 - RESPONDA se, em módulo, a força devido à colisão que atuou sobre o automóvel é maior, menor ou igual à aquela que atuou sobre o caminhão. JUSTIFIQUE sua resposta. V = 28 km/h, para a esquerda
Uma bala de massa m e velocidade Vo atravessa, quase instantaneamente, um bloco de massa M, que se encontrava em repouso, pendurado por um fio flexível, de massa desprezível. Nessa colisão a bala perde ¾ de sua energia cinética inicial. Determine a altura h, alcançada pelo pêndulo.
Conservação da Energia Mecânica do bloco M ao mover de A até B B VM A Conservação da Quantidade de Movimento: Considerando a bala:
Exercícios 01 - Um corpo de 80kg cai da altura de 80m e, após bater no solo, retorna, atingindo a altura máxima de 20m. Qual o valor do coeficiente de restituição entre o corpo e o solo?
02 - Na figura representada, um homem de massa M está de pé sobre uma tábua de comprimento L, que se encontra em repouso numa superfície sem atrito. O homem caminha de um extremo a outro da tábua. Que distância percorreu a tábua em relação ao solo se sua massa é M/4 ?
ANTES L DEPOIS D L - D Ex. 02
03 - No esquema a seguir, mA=1,0kg e mB=2,0kg. Não há atrito entre os corpos e o plano de apoio. A mola tem massa desprezível. Estando a mola comprimida entre os blocos, o sistema é abandonado em repouso. A mola distende-se e cai por não estar presa a nenhum deles. O corpo B adquire velocidade de 0,5m/s. Determine a energia potencial da mola no instante em que o sistema é abandonado livremente.
04 - Um móvel A de massa M move-se com velocidade constante V ao longo de um plano horizontal sem atrito. Quando o corpo B, de massa M/3, é solto, este se encaixa perfeitamente na abertura do móvel A. Qual será a nova velocidade do conjunto após as duas massas se encaixarem perfeitamente?
05 - Um trenó, com massa total de 250kg, desliza no gelo à velocidade de 10m/s. Se o seu condutor atirar para trás 50kg de carga à velocidade de 10m/s, qual será a nova velocidade do trenó?
A B A B ANTES DEPOIS 06 - Um bloco, viajando com uma determinada velocidade, choca-se plasticamente com outro bloco de mesma massa, inicialmente em repouso. Determine a razão entre a energia cinética do sistema antes e depois do choque.
07 - O bloco I, de massa m e velocidade Vo, choca-se elasticamente com o bloco II, de mesma massa. Sendo g a gravidade local e desprezando-se os atritos, determine, em função de Vo e g, a altura h atingida pelo bloco II.
B A Ex. 07 Conservação da Energia Mecânica do bloco II ao mover de A até B Para esse caso, a velocidade do bloco II após a colisão será a mesma do bloco I antes da colisão. A colisão foi elástica, havendo troca de velocidades.
08 - Um pequeno vagão, de massa 90kg, rola à velocidade de 10m/s, sobre um trilho horizontal. Num determinado instante cai verticalmente, de uma correia transportadora, sobre o vagão, um saco de areia de 60kg. Determine a velocidade do vagão carregado.
09 - A quantidade de movimento de uma partícula de massa 0,4kg tem módulo 1,2kg.m/s. Neste instante, qual a energia cinética da partícula é, em joules?
10 - Um carro de corrida de massa 800kg entra numa curva com velocidade 30m/s e sai com velocidade de igual módulo, porém numa direção perpendicular à inicial, tendo sua velocidade sofrido uma rotação de 90°. Determine a intensidade do impulso recebido pelo carro.
m ANTES m DEPOIS 11 - Uma esfera de massa m e velocidade v colidiu frontalmente com um obstáculo fixo, retornando com a mesma velocidade em módulo. Qual foi a variação da quantidade de movimento da esfera?
12 - Uma bala de 0,20kg tem velocidade horizontal de 300m/s; bate e fica presa num bloco de madeira de massa 1,0kg, que estão em repouso num plano horizontal, sem atrito. Determine a velocidade com que o conjunto (bloco e bala) começa a deslocar-se.
13 - Em um plano horizontal sem atrito, duas partículas, A e B, realizam uma colisão unidimensional. Não considere o efeito do ar. A partícula A tem massa m e a partícula Btem massa M. Antes da colisão a partícula B estava em repouso e após a colisão a partícula A fica em repouso. Qual o coeficiente de restituição nesta colisão?
14 - Um pêndulo balístico de massa 2kg, atingido por um projétil de massa 10g com velocidade 402m/s, colide frontal e elasticamente com um bloco de massa 2,01kg. Após a colisão, o bloco desliza, sobre uma mesa, parando em 1,0s. Considerando g = 10m/s², determine o coeficiente de atrito entre a mesa e o bloco. Considere que o projétil se aloja no pêndulo.
Ex. 14 Colisão entre a bala e o bloco No choque frontal e elástico entre corpos de mesma massa há troca de velocidades. Logo a velocidade inicial do bloco que se encontra sobre a mesa é: