1 / 29

Target Tracking Performance Evaluation A General Software Environment for Filtering

Target Tracking Performance Evaluation A General Software Environment for Filtering. Rickard Karlsson Gustaf Hendeby Automatic Control Linköping University, SWEDEN. rickard@isy.liu.se. Motivating Example. Range-Only Measurements. Two Sensors with range uncertainties. Performance?

rose-tate
Download Presentation

Target Tracking Performance Evaluation A General Software Environment for Filtering

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Target Tracking Performance EvaluationA General Software Environment for Filtering Rickard Karlsson Gustaf Hendeby Automatic Control Linköping University, SWEDEN rickard@isy.liu.se

  2. Motivating Example Range-Only Measurements Two Sensors with range uncertainties • Performance? • General Software for filtering

  3. Outline • Nonlinear filtering using particle filters • Performace measure for nonlinear filtering Kullback-Divergence vs RMSE • General Filtering Software Object oriented design Design Patterns • Examples

  4. Filtering Process noise STATE SPACE MODEL PROBABILISTIC DESCRIPTION Measurement noise Method? Performance? Implementation?

  5. Bayesian Recursions: Probability Density Function (pdf) M.U. T.U. Approx system Approx pdf Particle Filter Extended Kalman Filter

  6. Filter Evaluation: Mean Square Error (MSE) Mean square error (MSE) • Standard performance measure • Approximates the estimation error covariance • Bounded by the Cramér-Rao Lower Bound (CRLB) • Ignores higher-order moments! Compare the true trajectory with the estimated!!! What can we do instead?

  7. Kullback-Leibler Information

  8. Filter Evaluation: Kullback Divergence (KD) Kullback Divergence (KD) • Compares the distance between two distributions • Captures all moments of the distributions • True PDF from a grid-based method • True PDF from PF, compare sub-optimal filters • Smoothing kernel needed for implementation Compare the true PDF with the estimated PDF.

  9. Generalized Gaussian Generalized Gaussion Distribution Kullback Divergence PDF

  10. Example 1: One-dimensional Nonlinear System Probability Density Function x Time

  11. Example 1: One-dimensional Nonlinear System RMSE Kullback Divergence KD for one realization comparing PF and EKF RMSE for 400 MC simulations

  12. Example 2: Range-Only Measurement • Estimate target position from range-only measurements • Nonlinear measurements but Gaussian noise • Posterior distribution: bimodal • Point Estimate: EKF vs PF the same, i.e. same RMSE

  13. Example 2: Simulation Results for Range-Only KD MSE EKF EKF PF PF No Difference! KD Indicates a Difference!

  14. Calculating the probability EKF Probability for target within the circle with radius R PF&True

  15. F++ A General Filtering Environment in C++ • MATLAB • Easy to use • Weak typing • Somewhat slow • Object oriented (not really) • C++ • More complicated to use • Fast • Strong typing • Object oriented • Can be implemented ! F++: Fairly easy to use Just provide models f(x), h(x), etc Estimators: EKF, PF, IMM, UKF OOP & Design Patterns Open Source code available www.control.isy.liu.se/resources/f++

  16. Object Oriented Programming (OOP) • Inheritance • Encapsulation • Overloading

  17. Design Patterns – What is it? “Design patterns are general, programming language independent, conceptual high level solutions to common problems” Example: • Smart Pointers • Singletons • Object factories • …

  18. F++ A General Filtering Framwork in C++ Model Noise Estimator I/O • EKF • PF • IMM • UKF • MPF • MATLAB • XML • Gauss • SumNoise • … • LinModel • MultiModel • GenericModel • <LinDyn,LinMeas>

  19. F++ A General Filtering Framwork in C++ Model Noise Estimator I/O • EKF • PF • IMM • UKF • MPF • MATLAB • XML • Gauss • SumNoise • … • LinModel • MultiModel • GenericModel • <LinDyn,LinMeas>

  20. Class: Model

  21. F++ A General Filtering Framwork in C++ Model Noise Estimator I/O • EKF • PF • IMM • UKF • MPF • MATLAB • XML • Gauss • SumNoise • … • LinModel • MultiModel • GenericModel • <LinDyn,LinMeas>

  22. Class: Noise

  23. F++ A General Filtering Framwork in C++ Model Noise Estimator I/O • EKF • PF • IMM • UKF • MPF • MATLAB • XML • Gauss • SumNoise • … • LinModel • MultiModel • GenericModel • <LinDyn,LinMeas>

  24. Class: Estimator

  25. F++ A General Filtering Framwork in C++ Ex: Linear Gaussian system with KF and MATLAB support Model Noise Estimator I/O • EKF • PF • IMM • UKF • MPF • MATLAB • XML • Gauss • SumNoise • … • LinModel • MultiModel • GenericModel • <LinDyn,LinMeas>

  26. F++ A General Filtering Framwork in C++ Ex: Non-Linear Gaussian system with PF and MATLAB support Model Noise Estimator I/O • EKF • PF • IMM • UKF • MPF • MATLAB • XML • Gauss • SumNoise • … • LinModel • MultiModel • GenericModel • <LinDyn,LinMeas>

  27. Code: Main Estimation Loop u y filter estimate Estimator Time Update Meas. Update Estimate This works for any estimator!

  28. Code: Main Program INPUT MC-loop True/Meas Estimate OUTPUT Same Code for any Model

  29. Summary • Proposed KD as a performance measure • General Filtering Software Rickard Karlsson Automatic Control Linköping University, SWEDEN rickard@isy.liu.se www.control.isy.liu.se/~rickard

More Related