1 / 27

Abstract Temporal Graph

The ATG Minimization Algorithms aim to minimize full and ordered temporal graphs, addressing conflicts and redundant arcs to optimize structure and efficiency. This intricate process enhances graph representation.

rossjames
Download Presentation

Abstract Temporal Graph

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Abstract Temporal Graph Minimization Algorithms

  2. minimize_full (ATG) 1. ConvertFull (ATG) 2. PropagateFull(ATG)

  3. ConvertFull(ATG) /* Nodes n1, n2, …., nm */ for i=1 to m for j=1 to m if i=j add self-referencing arc at ni with label {self_ref} else if there is an arc from ni to nj do nothing else if there is an arc from nj to ni add an arc from ni to nj with label tcji-1 else add arc from ni to nj set to C

  4. PropagateFull(ATG) /* Nodes n1, n2, …., nm */ repeat for k=1 to m for i=1 to m for j=1 to m /* critical step */ tcij ← match(tcij, propagate(tcik,tckj)) if tcij = {} a conflict is raised until no arc label is reduced /* no change */ The critical step is executed m3 times

  5. PropagateFull cont /* remove self-referencing and inverse arcs */ for i=1 to m for j=i to m if i=j remove self-referencing arc at ni else tcij ← match(tcij,tcji-1) if tcij = {} a conflict is raised else delete arc from nj to ni

  6. nk nj ni

  7. minimize_ordered (ATG) 1. ConvertOrdered (ATG) 2. PropagateOrdered(ATG)

  8. ConvertOrdered(ATG) /* Let node ordering be: n1, n2, …., nm */ for i=1 to (m-1) for j=i+1 to m if nodes ni to nj are unconnected add an arc from ni to nj with label C else if there is only an arc from ni to nj do nothing else if there is only an arc from nj to ni add arc from ni to nj with label tcji-1 and delete the arc from nj to ni else tcij ← match(tcij,tcji-1) if tcij = {} a conflict is raised else delete arc from nj to ni

  9. PropagateOrdered(ATG) /* Let node ordering be: n1, n2, …., nm */ repeat /* for every intermediate node nk */ for k=2 to (m-1) /* for every incoming arc to nk */ for i=1 to (k-1) /* for every outgoing arc from nk */ for j=(K+1) to m /* critical step */ tcij ← match(tcij, propagate(tcik,tckj)) if tcij = {} a conflict is raised until no arc label is reduced /* no change */ The critical step is executed (m3 – 3m2 + 2m)/6 times

  10. Point of caution: In the fully connected ATG there are at least two distinct paths between every pair of nodes and the propagation is bidirectional. In the ordered ATG the propagation is unidirectional and thus the labels of the basic arcs stay invariant under the propagation n2 n3 n1

  11. Example of a simple ATG –Instantaneous events and relative constraints • C = {<, =, >} • self_ref is set to = • Transitivity Table Cik Ckj

  12. A simple example temporal graph <  N1 N2 = = N5 N3 N4 <, > < 

  13. Original Temporal Graph n1 ---> n2 { < } n1 ---> n3 { = } n2 ---> n4 { = } n3 ---> n4 { < } n4 ---> n5 { < > }

  14. Fully Connected Temporal Graph n1 ---> n1 { = } n1 ---> n2 { < } n1 ---> n3 { = } n1 ---> n4 { < = > } n1 ---> n5 { < = > } n2 ---> n1 { > } n2 ---> n2 { = } n2 ---> n3 { < = > } n2 ---> n4 { = } n2 ---> n5 { < = > } n3 ---> n1 { = } n3 ---> n2 { < = > } n3 ---> n3 { = } n3 ---> n4 { < } n3 ---> n5 { < = > } n4 ---> n1 { < = > } n4 ---> n2 { = } n4 ---> n3 { > } n4 ---> n4 { = } n4 ---> n5 { < > } n5 ---> n1 { < = > } n5 ---> n2 { < = > } n5 ---> n3 { < = > } n5 ---> n4 { < > } n5 ---> n5 { = }

  15. Minimized Temporal Graph n1 ---> n2 { < } n1 ---> n3 { = } n1 ---> n4 { < } n1 ---> n5 { < = > } n2 ---> n3 { > } n2 ---> n4 { = } n2 ---> n5 { < > } n3 ---> n4 { < } n3 ---> n5 { < = > } n4 ---> n5 { < > }

  16. N1 N2 = = N5 N3 N4 <, > < 

  17. Original Temporal Graph n1 ---> n2 { < } n1 ---> n3 { = } n2 ---> n4 { = } n3 ---> n4 { < } n4 ---> n5 { < > }

  18. Ordered Temporal Graph n1 ---> n2 { < } n1 ---> n3 { = } n1 ---> n4 { < = > } n1 ---> n5 { < = > } n2 ---> n3 { < = > } n2 ---> n4 { = } n2 ---> n5 { < = > } n3 ---> n4 { < } n3 ---> n5 { < = > } n4 ---> n5 { < > }

  19. Minimized Temporal Graph n1 ---> n2 { < } n1 ---> n3 { = } n1 ---> n4 { < } n1 ---> n5 { < = > } n2 ---> n3 { < = > } n2 ---> n4 { = } n2 ---> n5 { < > } n3 ---> n4 { < } n3 ---> n5 { < = > } n4 ---> n5 { < > }

  20. Another simple example temporal graph <  N1 N2 = <  N3

  21. Original Temporal Graph n1 ---> n2 { < } n1 ---> n3 { = } n2 ---> n3 { < }

  22. Temporal Graph n1 ---> n1 { = } n1 ---> n2 { < } n1 ---> n3 { = } n2 ---> n1 { > } n2 ---> n2 { = } n2 ---> n3 { < } n3 ---> n1 { = } n3 ---> n2 { > } n3 ---> n3 { = } Conflict detected between nodes n2 and n3

  23. Another Example • Diagnosis reached (n1) • Discussion about therapy (n2 – n3) • Consensus on best therapy regime (n4) • Patient agreed on proposed therapy (n5) • Application of therapy (n6 – n7) • Adjustment of some therapy parameters (n8) • Patient monitoring (n9 – n10)

  24. Original Temporal Graph n1 ---> n3 { < = } n2 ---> n1 { < = } n4 ---> n3 { = > } n5 ---> n4 { = > } n6 ---> n5 { = > } n8 ---> n6 { > } n8 ---> n7 { < } n9 ---> n2 { < = } n10 ---> n7 { > }

  25. Derived Temporal Relations n1 ---> n2 { = > } n1 ---> n3 { < = } n1 ---> n4 { < = } n1 ---> n5 { < = } n1 ---> n6 { < = } n1 ---> n7 { < } n1 ---> n8 { < } n1 ---> n9 { = > } n1 ---> n10 { < } n2 ---> n3 { < = } n2 ---> n4 { < = } n2 ---> n5 { < = } n2 ---> n6 { < = } n2 ---> n7 { < } n2 ---> n8 { < } n2 ---> n9 { = > } n2 ---> n10 { < }

  26. Derived Temporal Relations cont n3 ---> n4 { < = } n3 ---> n5 { < = } n3 ---> n6 { < = } n3 ---> n7 { < } n3 ---> n8 { < } n3 ---> n9 { = > } n3 ---> n10 { < } n4 ---> n5 { < = } n4 ---> n6 { < = } n4 ---> n7 { < } n4 ---> n8 { < } n4 ---> n9 { = > } n4 ---> n10 { < } n5 ---> n6 { < = } n5 ---> n7 { < } n5 ---> n8 { < } n5 ---> n9 { = > } n5 ---> n10 { < }

  27. Derived Temporal Relations cont n6 ---> n7 { < } n6 ---> n8 { < } n6 ---> n9 { = > } n6 ---> n10 { < } n7 ---> n8 { > } n7 ---> n9 { > } n7 ---> n10 { < } n8 ---> n9 { > } n8 ---> n10 { < } n9 ---> n10 { < }

More Related