1 / 71

Les piles

Les piles.

rowland
Download Presentation

Les piles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Les piles Djamal Rebaïne

  2. Utilité d'une pile Une pile est une zone de mémoire dans laquelle on peut stocker temporairement des registres. Il s'agit d'un moyen d'accéder à des données en les empilant, telle une pile de livre, puis en les dépilant pour les utiliser. Ainsi il est nécessaire de dépiler les valeurs stocker au sommet (les dernières à avoir été stockées) pour pouvoir accéder aux valeurs situées à la base de la pile. • En réalité il s'agit d'une zone de mémoire et d'un pointeur qui permet de repérer le sommet de la pile. La pile est de type LIFO (Last In First Out), c'est-à-dire que la première valeur empilée sera la dernière sortie (Si vous empilez des livres, il vous faudra les dépiler en commençant par enlever les livres du dessus. Le premier livre empilé sera donc le dernier sorti!). • Les instructions PUSH et POP Les instructions PUSH et POP sont les instructions qui servent à empiler et dépiler les données. • PUSH registre met le contenu du registre dans la pile (empilement) • POP registre récupère le contenu de la pile et le stocke dans le registre (dépilage Djamal Rebaïne

  3. Ainsi, l'instruction PUSH BX empile le contenu du registre BX, et l'instruction POP AX récupère le contenu du sommet de la pile et le transfère dans AX. Djamal Rebaïne

  4. Utilisation de la pile sur un exemple • Dans l'exemple suivant, que l'on imaginera au milieu d'un programme, on stocke les valeurs contenues dans AX et BX pour pouvoir utiliser ces deux registres, puis une fois l'opération accomplie on remet les valeurs qu'ils contenaient précédemment... Djamal Rebaïne

  5. PUSH AX • PUSH BX • MOV AX, [0140] • ADD BX, AX • MOV [0140], BX • POP BX • POP AX Djamal Rebaïne

  6. Les registres SS et SP Les registres SS et SP sont deux registres servant à gérer la pile: • SS (Stack Segment, dont la traduction est segment de pile) est un registre 16 bits contenant l'adresse du segment de pile courant. • Il doit être initialisé au début du programme • SP (Stack Pointer, littéralement pointeur de pile) est le déplacement pour atteindre le sommet de la pile (16 bits de poids faible). Djamal Rebaïne

  7. SP pointe vers le sommet, c'est-à-dire sur le dernier bloc occupé de la pile. Lorsque l'on ajoute un élément à la pile, l'adresse contenue dans SP est décrémentée de 2 octets (car un emplacement de la pile fait 16 bits de longueur). • En effet, lorsque l'on parcourt la pile de la base vers le sommet, les adresse décroissent. Par contre l'instruction POP incrémente de 2 octets (16 bits) la valeur de SP. Djamal Rebaïne

  8. PUSH: SP <- SP - 2 • POP: SP <- SP + 2 • Ainsi, lorsque la pile est vide SP pointe sous la pile (la case mémoire en-dessous de la base de la pile) car il n'y a pas de case occupée. Un POP provoquera alors une erreur... Djamal Rebaïne

  9. Déclarer une pile • Pour pouvoir utiliser une pile, il faut la déclarer, c'est-à-dire réserver un espace mémoire pour son utilisation, puis initialiser les registres avec les valeurs correspondant à la base de la pile, ainsi que son sommet (rappel: situé sous la pile lorsque celle-ci est vide). • Ainsi pour définir une pile, il s'agit tout d'abord de la déclarer grâce à la directive SEGMENT stack. Djamal Rebaïne

  10. Déclaration d'une pile Pour utiliser une pile en assembleur, il faut déclarer un segment de pile, et y réserver un espace suffisant. Ensuite, il est nécessaire d'initialiser les registres SS et SP pour pointer sous le sommet de la pile. Voici la déclaration d'une pile de 200 octets : segment_pile SEGMENT stack ; mot clef stack pour pile DW 100 dup (?) ; réserve espace base_pile EQU this word ; etiquette base de la pile segment_pile ENDS Noter le mot clef ``stack '' après la directive SEGMENT, qui indique à l'assembleur qu'il s'agit d'un segment de pile. Afin d'initialiser SP, il faut repérer l'adresse du bas de la pile; c'est le rôle de la ligne base_pile EQU this word (voir figure suivante). En fait l’opérateur this word (ne pas oublier que les éléments d’un pile sont des mots) crée une adresse mémoire qui est le mot suivant et l’assigne à bas_pile. Comme les adresse d’une pile sont dans l’ordre décroissant, cette adresse en dessous de l’adrese du début de la pile. Djamal Rebaïne

  11. Autrement dit, la déclaration suivante: First-byte equ this byte Word table dw 100 dup(?) permet d’assigner un nom au premier octet de l’adresse de word-table.

  12. Djamal Rebaïne

  13. Suite aux déclarations, il faut écrire une séquence d'initialisations: • ASSUME SS:segment_pile; génère une adresse pour l’emplacementde la ; pile • MOV AX, segment_pile • MOV SS, AX ; initialise le segment de pile • MOV SP, base_pile ; copier l'adresse de la base de la pile dans SP • Remarquez qu’il n'est pas possible de faire directement MOV SS, segment_pile car cette instruction n'existe pas! Djamal Rebaïne

  14. Les procédures-fonctions La notion de procédure - fonctions En langage assembleur, on appelle procédure un sous-programme qui permet d'effectuer un ensemble d'instructions par simple appel de la procédure. Cette notion de sous-programme est généralement appelée fonction dans d'autres langages. Les fonctions et les procédure permettent d'exécuter dans plusieurs parties du programme une série d'instruction, cela permet une simplicité du code et donc une taille de programme minimale. D'autre part, une procédure peut faire appel à elle-même, on parle alors de procédure récursive (il ne faut pas oublier de mettre une condition de sortie au risque sinon de ne pas pouvoir arrêter le programme...). Djamal Rebaïne

  15. Djamal Rebaïne

  16. La déclaration d'une procédure Étant donnée qu'une procédure est une suite d'instructions, il s'agit de regrouper les instructions composant la procédure entre des mots clés. L'ensemble de cette manipulation est appelée déclaration de procédure. Ces mots clés permettant la déclaration de la procédure sont le • une étiquette (qui représente le nom de la fonction) précédant • le mot clef PROC marquant le début de la procédure, • suivi de near (qui signale que la procédure est située dans le même segment que le programme appelant) et • RET désignant la dernière instruction, • et enfin le mot-clé ENDP qui annonce la fin de la procédure. Ainsi une déclaration de procédure ressemble à ceci: Djamal Rebaïne

  17. Etiquette PROC near  instruction1   instruction2   ...   RET  Etiquette ENDP Djamal Rebaïne

  18. Appel d'une procédure C'est la directive CALL qui permet l'appel d'une procédure. Elle est suivie soit d'une adresse 16 bits, désignant la position du début de la procédure, ou bien du nom de la procédure (celui de l'étiquette qui précède le mot clé PROC). Djamal Rebaïne

  19. Comment l'appel et la fin de la procédure Lorsqu'on appelle une procédure, la première adresse de la procédure est stockée dans le registre IP (pointeur d’instruction), le processeur traite ensuite toutes les lignes d'instructions jusqu'à tomber sur le mot clé RET, qui va remettre dans le registre IP l'adresse qui y était stocké avant l'appel par PROC. Cela paraît simple mais le problème provient du fait que les procédures peuvent être imbriqués, c'est-à-dire que de saut en saut, le processeur doit être capable de revenir successivement aux adresses de retour. En fait, à chaque appel de fonction via l'instruction CALL, le processeur empile l'adresse contenue dans le registre IP (il pointe alors sur l'instruction suivant l'instruction CALL) avant de la modifier, à l'appel de l'instruction RET (qui ne prend pas d'arguments) le contenu de la pile est dépilé puis stocké dans le registre IP. Djamal Rebaïne

  20. Djamal Rebaïne

  21. Voici un exemple d’utilisation des procédures aussi simple que possible : ce programme appelle 12 fois une procédure qui écrit un message à l’écran et rend la main au DOS. Remarque : Les codes ASCII 10 et 13 représentent respectivement la fin de ligne et le retour chariot. Grâce à eux, on revient à la ligne chaque fois qu’on a écrit le message. Djamal Rebaïne

  22. Title les procédures Pile segment stack dw 100 dup (?) Basedepile equ thisword Pile ends data segement message db ’bonjour, monde!’, 10,13, ‘$’ data ends code segment assume cs:code, ds:code, ss:pile debut: MOV AX, data ; initialise le segment de données MOV DS, AX MOV AX, Pile MOV SS, AX ; initialise le segment de pile MOV SP, basedepile MOV CX,12 boucle: call ecritmessage ; appel de procédure LOOP boucle ; décrementer CX d’une unité et aller à ; boucle si CX est différent de 0 ; terminer le programme ici par le retour au DOS mov AX, 4C00h INT 21H Djamal Rebaïne

  23. ecritmessage proc near ;notre procédure mov ah, 09h move dx,offset message int 21h ret ecritmessage endp ; fin de la procédure/fonction code ends ; fin du segment de code end debut ; fin de la porte d’entrée Djamal Rebaïne

  24. Le passage de paramètres Une procédure effectue généralement des actions sur des données qu'on lui fournit, toutefois dans la déclaration de la procédure il n'y a pas de paramètres (dans des langages évolués on place généralement les noms des variables comme paramètres entre des parenthèses, séparés par des virgules). Il existe toutefois deux façons de passer des paramètres à une procédure: Le passage des paramètres par registre: on stocke les valeurs dans les registres utilisés dans la procédure Le passage des paramètres par pile: on stocke les valeurs dans la pile avant d'appeler la procédure, puis on lit le contenu de la pile dans la procédure. Le passage de paramètres par registres C'est une méthode simple pour passer des paramètres: Elle consiste à écrire une procédure en faisant référence à des registres dans les instructions, et de mettre les valeurs que l'on désire dans les registres juste avant l’appel de la fonction... Djamal Rebaïne

  25. Le passage des paramètres par registre Cette manière de procéder est très simple à mettre en oeuvre mais elle est très limité, car on ne peut pas passer autant de paramètres que l'on désire, à cause du nombre limité de registres. On lui préfèrera le passage des paramètres par pile. Le passage de paramètres par pile Cette méthode de passage de paramètres consiste à stocker les valeurs des paramètres dans la pile avant l'appel de procédure (grâce à l'instruction PUSH), puis de lire le contenu de la pile grâce à un registre spécial (BP: Base pointer) qui permet de lire des valeurs dans la pile sans les dépiler, ni modifier le pointeur de sommet de pile (SP). Djamal Rebaïne

  26. L'appel de la procédure se fera comme suit: PUSH parametre1 ; où parametre1 correspond à une valeur ou une adresse PUSH parametre2 ; où parametre1 correspond à une valeur ou une adresse CALL procedure La procédure commencera par l'instruction suivante: MOV BP, SP ;permet de faire pointer BP sur le sommet de la pile Puis pourra contenir des instructions du type: MOV AX, [BP] ;Stocke la valeur contenue dans le sommet de ;la pile dans AX, sans dépiler MOV BX, [BP+2] ;Stocke la valeur contenue dans le mot suivant de la ;pile dans BX (un mot fait 2 octets), sans dépiler Djamal Rebaïne

  27. Exemple avec passage par registre • On va écrire une procédure ``SOMME'' qui calcule la somme de 2 nombres naturels de 16 bits. • Convenons que les entiers sont passés par les registres AX et BX, et que le résultat sera placé dans le registre AX. • La procédure s'écrit alors très simplement : Djamal Rebaïne

  28. SOMME PROC near ; AX <- AX + BX ADD AX, BX RET SOMME ENDP et son appel, par exemple pour ajouter 6 à la variable Truc : MOV AX, 6 MOV BX, Truc CALL SOMME MOV Truc, AX Djamal Rebaïne

  29. Exemple avec passage par la pile Cette technique met en oeuvre un nouveau registre, BP (Base Pointer), qui permet de lire des valeurs sur la pile sans les dépiler ni modifier SP. Le registre BP permet un mode d'adressage indirect spécial, de la forme : MOV AX, [BP+6]; cette instruction charge le contenu du mot mémoire d'adresse BP+6 dans AX. Ainsi, on lira le sommet de la pile avec : MOV BP, SP ;BP pointe sur le sommet MOV AX, [BP] ;lit sans dépiler et le mot suivant avec : MOV AX, [BP+2] ;2 car 2 octets par mot de pile. • L'appel de la procédure ``SOMME2'' avec passage par la pile est : PUSH 6 PUSH Truc CALL SOMME2 Djamal Rebaïne

  30. ; passage de paramètres push AX push BX push CX push DX call soubroutine ; branchement vers la procédure ; ......... Contineur traitement soubroutine proc near mov BP,SP ; pointe vers le sommet de pile move AX, [BP+2] ; acquérir dernier paramètre (DX) sans dépiler; pourquoi? move AX, [BP+4] ; acquérir 3ème paramètre (CX) sans dépiler move AX, [BP+6] ; acquérir 2ème paramètre (BX) sans dépiler move AX, [BP+8] ; acquérir premeir paramètre (AX) sans dépiler ........... ret soubroutine ends Djamal Rebaïne

  31. Emplacement de sous-programmes En général, les sous-programmes sont mis à la fin du programme principal. Mais, on peut aussi les mettre dans la partie du segment de code. Seulement,il faudra s’assurer que la première instruction de code exécutée soit celle du programme principal. Pour cela, il suffit juste de mettre un JMP juste avant la déclaration du sous-programme. Djamal Rebaïne

  32. Exemple: le calcul de PGCD de plusieurs nombres TITLE PGCDdeplusieursnombres SPILE SEGMENT STACK DW 100 DUP(?) SPILE ENDS SDATA SEGMENT valeurs DB 10,30,40,76,32,52 resultat DB 3 dup(?) tab_sortie db 7 dup('$') tab_conv db 7 dup('$') start dw 0 SDATA ENDS SCODE SEGMENT ASSUME CS:SCODE,DS:SDATA JMP debut PGCD proc near ; déclaration de la fonction repet: MOV AL,CL MOV AH,0 IDIV CH; CMP AH,0 JE dfin MOV CL, CH MOV CH, AH JMP repet dfin: RET ;le PGCD est dans CH PGCD ENDP ;fin de la procédure PGCD Djamal Rebaïne

  33. DEBUT: mov ax,sdata mov ds,ax mov SI,0; sert d’indice tableau MOV BX, 5; compteur de nombre à manipuler mov CH, valeurs[SI] INC SI repeter: CMP BX,0 JE fin mov CL, valeurs[SI] Call PGCD INC SI DEC BX JMP repeter Fin: ; le PGCD de tous les nombres est dans CH Djamal Rebaïne

  34. xor ax,ax ; tout ce qui suit sert à afficher les chiffres contenus dans le PGCD qui est dans CH mov al,ch mov si, offset tab_conv mov start, offset tab_conv ;start sert à garder le début du tableau mov bx,0 mov bl,10 division: ; on suppose que la division se fait sur des nombre de 16 bits div bl cmp al,0 je fin_div add ah,48 mov byte ptr[si],ah mov ah,0 inc si jmp division fin_div: add ah,48 mov byte ptr[si],ah ; tab_conv contient le nombre converti à l’envers xor bx,bx mov bx, offset tab_sortie xor ax,ax Djamal Rebaïne

  35. st_bcl: cmp si,start jb fin_bcl mov ah , byte ptr[si] mov byte ptr[bx] , ah dec si inc bx jmp st_bcl fin_bcl: mov byte ptr[bx],10 inc bx mov byte ptr[bx],13 inc bx mov byte ptr[bx],'$' mov dx,offset tab_sortie mov ah,09h int 21h Sortie: MOV AX, 4c00h; Int 21h SCODE ENDS END DEBUT Djamal Rebaïne

  36. La récursivité • Définition: Une procédure est dite récursive si, et seulement si, elle fait appel à elle-même, soit directement soit indirectement Djamal Rebaïne

  37. Fonctionnement d’une fonctionrécursive • Création d’une pile pour la sauvegarde entre autres desparamètres d’appels de la procédure et la l’adresse de retour. Djamal Rebaïne

  38. Calculer le factoriel de n, noté n! • Le problème est: Calculer le factoriel d'un nombre entier donné en entrée. • En entrée: Nous avons n nombre entiers qui sont plus grands ou égaux à 0. • Sortie: Nous avons un nombre entier qui représente le factoriel de n. Djamal Rebaïne

  39. Fonction principale • entier n nfact • lire n • si (n < 0) alors écrire “entrée négative: ” n • sinon • nfact factoriel(n) • écrire “la factorielle de ” n “est” nfact • où factoriel satisfait le prototype • entier factoriel(entier) Djamal Rebaïne

  40. Fonction factoriel int factoriel(entier n) { si (n < 1) retourner 1 retourner n * factoriel(n-1) } Djamal Rebaïne

  41. Comment le faire en assembleur? On a besoin d’une pile! • En effet, à chaque appel récursif, la valeur du paramètre n est sauvegardée dans la pile de travail. • Ce processus d’empilement est répété jusqu’à ce que le paramètre actuel (de l’appel) n atteigne la valeur 0. Cela correspond à la fin de l’exécution de la fonction appelante. • Ensuite, commence le dépilement, et l’exécution de la prochaine instruction de la fonction appelante est entamée. Ce processus de dépilement est répété jusqu’à ce qu’on atteigne la valeur de départ du paramètre n. Djamal Rebaïne

  42. Cela se traduit par le programme assembleur suivant TITLE factoriel PILE segment stack dw 100 dup(?) Basdepile equ this word PILE ends Data segment N dw 4 fact dw ? Data ends Code segment assume CS:code, DS:Data, SS:Pile Debut: MOV AX,Data MOV DS,AX MOV AX,Pile MOV SS, AX ; initialise le segment de pile MOV SP, basdepile ; copier l'adresse de la base de la pile dans SP mov BX,n; sauvegarde la valeur de n mov AX,BX Push AX call factoriel Fin: pop AX; le résultat calculé par la fonction factoriel est dans AX mov fact, AX mov AX,4c00h int 21h Djamal Rebaïne

  43. Factoriel proc near ; en utilisant la pile CMP AX,0 JA DEPILE MOV AX,1 JMP fin DEPILE: ; dépiler jusqu’à ce n = 0 DEC AX PUSH AX ; factoriel(n-1) CALL FACTORIAL RetourResultat: POP BX MUL BX fin: ret factoriel endp ; fin de la procédure code ends end debut ; fin du programme code Djamal Rebaïne

  44. Calcul d’une somme par récursivité Title sommerecursive; pour totaliser la somme de 1 jusqu’à n. PILE segment stack dw 100 dup(?) Basdepile equ this word PILE ends Data segment N dw 12 som dw ? Data ends Code segment assume CS:code, DS:Data, SS:Pile Debut: MOV AX,Data MOV DS,AX MOV AX,Pile MOV SS, AX ; initialise le segment de pile MOV SP, basdepile ; copier l'adresse de la base de la pile dans SP mov CX,n; sauvegarde la valeur de n XOR AX,AX CALL sommerecursive Fin: pop AX; le résultat calculé par la fonction factoriel est dans AX mov fact, AX mov AX,4c00h int 21h Djamal Rebaïne

  45. sommerecursive proc near ; en utilisant des registres • CMP CX,0 • JZ fin • ADD AX,CX • DEC CX • CALL sommerecursive • fin: ret • factoriel endp ; fin de la procédure • code ends • end debut ; fin du programme code Djamal Rebaïne

  46. Les nombres de Fibonacci • Question: Écrire un programme qui calcule le nombre de Fibonacci défini comme suit: Djamal Rebaïne

  47. TITLE fibonacci SPILE SEGMENT STACK DW 100 DUP(?) SPILE ENDS SDATA SEGMENT n dw 6 SDATA ENDS SCODE SEGMENT ASSUME CS:SCODE,DS:SDATA DEBUT: mov ax,sdata mov ds,ax xor ax,ax xor bx,bx mov ax,n call fibo mov dl,al; afficher le résultat add dl,30h mov ah,2 int 21h sortie: MOV AX,4C00H INT 21H Djamal Rebaïne

  48. Fibo proc si1: cmp ax, 1 ; comparer ax avec 1 ja els ; si n<= 1, retourner 1 mov ax, 1 ; mettre 1 dans ax ret els: dec ax ; décrémenter ax de 1 c'est-à-dire égal à n-1 push ax ; mettre n-1 sur la pile call Fibo ; résultat dans ax pop bx ; rectifier la pile et bx = n-1 dec bx ; bx = n -2 push ax ; sauvegarder ax = Fibonacci(n-1) sur la pile mov ax,bx ; passe le n-1 à ax pour exécuter Fibonacci(n-2) call Fibo ; résultat dans ax = Fibonacci(n-2) pop bx ; bx = Fibonacci(n-1) add ax, bx ; ax = Fibonacci(n-2) + Fibonacci(n-1) ret Fibo endp SCODE ENDS END DEBUT Djamal Rebaïne

  49. Les tours de Hanoï http://www.multimania.com/fmaire/jeux/hanoi/hanoi.html http://members.aa.net/~wgf/Hanoi/Hanoi.html Djamal Rebaïne

  50. Description du problème: Montrez comment déplacern disques de tailles distinctes d'une tige A vers une tige B • en utilisant comme tampon une tige C. Initialement seule la tige A contient les n disques ordonnés avec le plus petit sur le dessus. On ne doit déplacer qu'un seul disque à la fois. Il est interdit de placer un disque sur un autre plus petit. • Entrée: Un entier n représentant le nombre de disques. • Sortie: Une série d'instructions de la forme " déplacer i vers j" indiquant les déplacements nécessaires pour résoudre le problème. Djamal Rebaïne

More Related