1 / 29

M. Gintner, I. Melo, B. Trpi šová University of Žilina

Nuclear Seminar, FMFI UK Bratislava May 21, 200 8. Signatures of a new vector resonance from strongly interacting electroweak symmetry breaking at LHC. M. Gintner, I. Melo, B. Trpi šová University of Žilina. Outline Strong Electroweak Symmetry Breaking

royal
Download Presentation

M. Gintner, I. Melo, B. Trpi šová University of Žilina

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nuclear Seminar, FMFI UK Bratislava May 21, 2008 Signatures of a new vector resonance from strongly interacting electroweak symmetry breaking at LHC M. Gintner, I. Melo, B. Trpišová University of Žilina

  2. Outline • Strong Electroweak Symmetry Breaking • BESS Model Vector Resonance ρ • LHC processes sensitive to ρ, cross sections • (CompHEP calculation) • Reconstruction of pp → W+ W- t t + X; pp → b b t t + X • (CompHEP, Pythia, Atlfast, Root)

  3. EWSB - one of Great Mysteries of Particle Physics • SM ………………………. 1 Higgs • Strong EWSB …….. no Higgs • SUSY (MSSM) ..... 5 Higgs Problem ! Monotheists Atheists Polytheists Classical

  4. Naturalness problem (Fine-tuning problem) ≈ - (200 GeV)2 . 1032for Λ = 1019 GeV mH≈ 100 – 200 GeV + (200 GeV)2 . 1032 - (200 GeV)2 . 1032

  5. SM SUSY (MSSM) = 0 → mH = 319 GeV ~ t1(2) Strong EWSB H not elementary, melts into techniquarks above ΛTC ≈ 1-3 TeV

  6. Chiral SB in QCD SU(2)L x SU(2)R → SU(2)V , vev ~ 90 MeV EWSB SU(2)L x SU(2)R → SU(2)V , vev ~ 246 GeV

  7. ,b ,b ,b ,b t t t 1,2 1,2 1,2 π = WL (Equivalence theorem) mt = 171 GeV≈ v/√2 v is EW scale (v = vev ~ 246 GeV) R.Casalbuoni et al. Phys.Lett. B155 (1985) 95;M.Gintner, I.Melo, B.Trpisova, Acta Phys. Slovaca, 56(2006)1

  8. Large Hadron Collider: pp at 14 TeV pp ―› ρtt ―›WW tt +X pp ―› ρbb ―›WWbb pp ―› ρtt ―›tt tt pp ―› ρtt ―› bb tt pp ―› ρbb ―› bb tt pp ―› ρ+tb ―› tb tb pp ―› ρ+tb ―› W+Z tb pp ―› WW+X pp ―› tt+X pp ―› jj tt pp ―› jj WW Mρ = 1 000 GeV Γρ = 42.3 GeV

  9. BESS (Breaking EW Symmetry Strongly) Model SU(2)L x SU(2)R global, SU(2)L x U(1)Y local L = Lkin + Lnon.lin. σ model -a v2 /4 Tr[(ωμ + i gvρμ . τ/2 )2] + Lmass+ LSM(W,Z) +b1ψL i γμ (u+∂μ – u+i gvρμ . τ/2+ u+ i g’/6 Yμ) u ψL + b2ψRPb i γμ (u ∂μ – u i gvρμ . τ/2 + u i g’/6 Yμ) u+PbψR + λ1ψL i γμ u+ Aμγ5 u ψL +λ2ψR Pb i γμ u Aμγ5 u+PbψR Our model Standard Model with Higgs replaced with ρ ωμ = [u+(∂μ + i g’/2 Yμτ3)u + u(∂μ+ i g Wμ . τ/2)u+]/2 Aμ = [u+(∂μ + i g’/2 Yμτ3)u - u(∂μ+ i g Wμ . τ/2)u+]/2 u = exp(i π . τ/2v) ψL = (tL,bL) Pb = diag(1,p) Mρ≈ √a v gv/2 (2) t v ≈ 246 GeV 1,2 R.Casalbuoni et al. Phys.Lett. B155 (1985) 95;M.Gintner, I.Melo, B.Trpisova, Acta Phys. Slovaca, 56(2006)1

  10. Low energy constraints Unitarity constraints WLWL → WLWL , WLWL → t t,t t → t t unitary up to 3 TeV gv≥ 10 gπ = Mρ/(2v gv) ≤ 0.2 Mρ(TeV) |b2 – λ2 | ≤ 0.04 gt≈ gv b1(2) / 4 |b1 – λ1 | ≤ 0.01 gπ ≤ 1.4 (Mρ= 1 000 GeV) gt ≤ 2.0 (Mρ= 1 000 GeV) if

  11. Partial (Γ―›WW) andtotal width Γtot of ρ0 Mρ = 1 000 GeV Γρ = 42.3 GeV gv = 20 b1 = 0.08

  12. CompHEP: pp → bb → tt + X σB = 26 617 fb Signal bb → tt 6 diagrams σS = 121 fb Background G G → tt 3 diagrams M±3Γ σB = 6 353 fb Cuts: Mρ-3Γρ < mtt < Mρ+3Γρ (GeV) pT(t), pT(t) > 350 GeV σS = 47 fb

  13. CompHEP: pp → bb → W+W- + X σB = 450 fb σS = 15.4 fb Signal 4 diagrams M±3Γ mWW σB → 100 fb Background uu → W+W- dd → W+W- 4 diagrams σS → 14.0 fb pTW

  14. CompHEP: pp → ttρ0 + X → bb t t + X σB = 17 fb QCD σS = 3.7 fb Signal M±3Γ mbb Signal 8 diagrams QCD bottom QCD background 35 diagrams Signal bottom pTb

  15. CompHEP: pp → bbρ0 + X → bb t t + X σB = 833 fb QCD Signal Γρ=127 GeV σ = 337 fb σS = 134 fb mtt Signal 8 diagrams QCD top QCD background 35 diagrams Signal top pTt

  16. CompHEP: pp → tbρ+ + X → bb t t + X σB = 332 fb QCD σS = 86 fb Signal mtb Signal 8 diagrams QCD top bottom QCD background 35 diagrams Signal top bottom pTq

  17. CompHEP: pp → (W+ W-) t t + X pp → (W+ W-) b b + X 39/8 diagrams in the dominant gg channel ρ No-resonance background ρ signal ρ

  18. CompHEP: pp → (W+ W-) t t + X(continued)pp → (W+ W-) b b + X b, Signal + Background: 39 diagrams b, ,b σS+B = 4 400 fb Signal: 8 diagrams σS+B = 9.4 fb σS = 9.4 fb Cuts: Mρ-3Γρ < mWW < Mρ+3Γρ (GeV) mW+b, mW-b > 200 GeV σS = 6.7 fb

  19. CompHEP: pp → (W+ Z) t b + X Signal + Background: 46 diagrams W+ Z σS+B = 12.7 fb Signal: 8 diagrams σS+B = 2.9 fb σS = 2.9 fb Cuts: Mρ-3Γρ < mWZ < Mρ+3Γρ (GeV) mW+b > 200 GeV σS = 2.5 fb

  20. CompHEP: pp → (tt) tt + X Signal + Background: 54 diagrams t t Signal: 8 diagrams σS+B = 3.7 fb σS = 1.3 fb Cuts: Mρ-3Γρ < mtt < Mρ+3Γρ (GeV)

  21. Cross sections in fb + statistical significance(peak region) significance background signal σB = 6 353 σB = 100 σB = 17 σB = 833 σB = 332 σB = 0.25 σB = 2.7 σB = 0.4 σB = 2.4 σS = 47 σS = 14 σS = 3.7 σS = 134 σS = 86 σS = 0.23 σS = 6.7 σS = 2.5 σS = 1.3 S = 5.9 * S = 14.0 * S = 9.0 S = 46.4 S = 47.2 S = 4.6 S = 40.8 * S = 39.5 * S = 8.4 • pp → bb → tt + X • pp → bb → W+W- + X • pp → (bb) tt + X • pp → bb (tt) + X • pp →b(bt) t + X • pp → (W+W-) t t + X • pp → (W+W-) b b + X • pp → (W+Z) t b + X • pp → (tt) tt + X S = NS/ √(NB)statistical significance NS = L σS , NB = L σB ,withL = 100 fb-1integrated luminosity * More than 1 cut applied

  22. pp → W W t t + Xl jjbjjbjj reconstruction(in collaboration with Jonathan Ferland, University of Montreal) One charged lepton channel: 40% of events (CompHEP, Pythia, Atlfast, Root) electron > 30 GeV GeV muon > 20 GeV mass of the W: Cuts: of jets > 25 GeV 50% b-tagging efficiency Reconstruction criterion

  23. 8 diagrams 39 diagrams Lum=100/fb Lum=100/fb 12.2 events 2.4 events number of events/17 GeV Distribution in invariant mass of WW pair (ρ →WW) ρ: Mρ=700 GeV, Γρ=4 GeV, b2=0.08, gv=10 Pz(ν) chosen correctly in 61.5 % of events number of events/17 GeV

  24. 39 diagrams 8 diagrams Mass of the W boson Lum=100/fb Lum=100/fb 12.2 events 2.4 events number of events/0.6 GeV number of events/0.6 GeV Mass of the top quark Lum=100/fb Lum=100/fb 12.2 events 2.4 events number of events/2.5 GeV number of events/2.5 GeV

  25. CompHEP ρ: Mρ=1000 GeV Γρ=26 GeV Reconstruction number of events/32 GeV Lum = 100 fb-1 12.8 events

  26. pp → ρ0 tt → bb t t + X → bb lνlb jjb (43.5%) reconstruction (in collaboration with J. Ferland) e > 30 GeV μ > 20 GeV of Cuts: L = 100 fb-1 j > 25 GeV GeV NS=0.8 L = 100 fb-1 NB=8

  27. Conclusions • Strong EWSB: an alternative to SUSY • ρ is a general prediction of Strong EWSB • (Modified) BESS model preferentially couples ρ with t,b • Several processes promising at CompHEP level

  28. Backup

  29. EWSB: SU(2)L x U(1)Y→ U(1)Q Weakly interacting models: - SUSY - SM (light) Higgs Strongly interacting models: - Technicolor A new strong vector resonanceρas an isospin triplet ( ) → BESS

More Related