310 likes | 487 Views
Center for Astrophysical Sciences at Johns Hopkins University 1. Baltimore, Maryland, USA. Node Coordinator: Tim Heckman Alex Szalay, professor Tamas Budavari, postdoc Charles Hoopes, postdoc. Center for Astrophysical Sciences at Johns Hopkins University. Baltimore, Maryland, USA.
E N D
Center for Astrophysical Sciences at Johns Hopkins University 1 Baltimore, Maryland, USA Node Coordinator: Tim Heckman Alex Szalay, professor Tamas Budavari, postdoc Charles Hoopes, postdoc
Center for Astrophysical Sciences at Johns Hopkins University Baltimore, Maryland, USA • ACS: Advanced Camera for Surveys • JHU/GSFC Co-op • Apache Point Observatory • FUSE: Far Ultraviolet Spectroscopic Explorer • GALEX: Galaxy Evolution Explorer
Center for Astrophysical Sciences at Johns Hopkins University Baltimore, Maryland, USA • ACS: Advanced Camera for Surveys • JHU/GSFC Co-op • Apache Point Observatory • FUSE: Far Ultraviolet Spectroscopic Explorer • GALEX: Galaxy Evolution Explorer
Center for Astrophysical Sciences at Johns Hopkins University Baltimore, Maryland, USA • ACS: Advanced Camera for Surveys • JHU/GSFC Co-op • Apache Point Observatory • FUSE: Far Ultraviolet Spectroscopic Explorer • GALEX: Galaxy Evolution Explorer Cooperative agreement for Research in astrophysics Between JHU and GSFC Laboratory for High Energy Astrophysics (LHEA)
Center for Astrophysical Sciences at Johns Hopkins University Baltimore, Maryland, USA • ACS: Advanced Camera for Surveys • JHU/GSFC Co-op • Apache Point Observatory • FUSE: Far Ultraviolet Spectroscopic Explorer • GALEX: Galaxy Evolution Explorer
Apache Point ObservatoryCloudcroft, New Mexico • SDSS telescopes • ARC 3.5 meter • SPIcam – optical imager • 5’ FOV • 0.14 “/pix • Echelle spectrograph • 3500 to 9800Å • R=37,500 • Double Imaging Spectrograph • Simultaneous red and blue spectra • 3600 to 8000Å – 0.8 to 3 Å/pixel • GrIm II infrared imager and spectrograph • 1μm to 2.5μm • NIC-FPS – NIR camera and Fabry-Perot Spectrometer • 0.85 to 2.5 μm • JHU has a share of the time, and we have experience
Center for Astrophysical Sciences at Johns Hopkins University Baltimore, Maryland, USA • ACS: Advanced Camera for Surveys • JHU/GSFC Co-op • Apache Point Observatory • FUSE: Far Ultraviolet Spectroscopic Explorer • GALEX: Galaxy Evolution Explorer
Far Ultraviolet Spectroscopic Explorer (FUSE) • Spectroscopy from 905 – 1180Å, velocity resolution ~20 km s-1 • Tim Heckman and Charles Hoopes are affiliated with the FUSE Science Team • FUSE Science • Metallicity of neutral gas in I Zw 18 • (Aloisi et al. 2003) • 105 K gas in starburst superwinds • (Heckman et al. 2001, Hoopes et al. 2003) • H2 absorption in starbursts • (Hoopes et al. 2004) • FUV SEDs and Extinction in starbursts • (Buat et al. 2002) • FUV stellar libraries for OB stars • (Pellerin et al. 2002, Robert et al. 2003) Currently in safe mode, but expected to return to service I Zw 18: Aloisi et al. 2003
Center for Astrophysical Sciences at Johns Hopkins University Baltimore, Maryland, USA • ACS: Advanced Camera for Surveys • JHU/GSFC Co-op • Apache Point Observatory • FUSE: Far Ultraviolet Spectroscopic Explorer • GALEX: Galaxy Evolution Explorer
GALEX: The Galaxy Evolution Explorer • Launched April 28, 2003 • Imaging in two UV bands • FUV: λ=1516Å, Δλ=268Å • NUV: λ=2267Å, Δλ=732Å • Spatial resolution ~5” • FOV ~1.2 deg2 • Slitless Spectroscopy • 1350-2800Å • R=80-300 • Tamas Budavari, Alex Szalay, Tim Heckman, Charles Hoopes on the GALEX Science Team
GALEX Surveys * Planned area
Probing Galaxy Evolution with GALEX • Combo-17 • NOAO Deep Wide-Field Survey (NDWFS) • Ultraviolet Luminous Galaxies
COMBO-17 / CDFS • 17 band optical photometry (Wolf et al. 2004) • Photometric redshifts with δz/(1+z)<0.1 at R=24 • Redshifts out z=1 Combo-17 filters
GALEX CDFS Data • GALEX FUV (1500Å) and NUV (2300Å) • Part of the Deep Imaging Survey (DIS) • CFDS_00: 44 ksec, 1sq deg • AB=25 in FUV,NUV • CDFS_01: 31 ksec, 1 sq deg • GALEX data are public as of January 2005
Evolution in the Mass-Dependent Star Formation History of Galaxies from z=0 to 1 • Use GALEX + (aperture corrected) Combo-17 photometry and library of BC03 models (following Kauffmann et al., Salim et al., etc) to derive: • SFR, UV Extinction, Stellar Mass • From GEMS catalog: • Sersic indices, Half-light radii, Surface mass density, SFR/area • Extend work of Kauffmann et al. and Brinchmann et al. to z=1 • Examine SFR distribution vs. many parameters as a function of redshift (Mass, surface density, SFR, extinction, size, Sersic index) • Examine how SFR/M, SFR/size, Extinction varies with mass, surface density
NOAO Deep Wide-Field Survey (NDWFS)co-PIs: Arjun Dey & Buell Jannuzi • Deep optical and NIR survey of two 9.3 sq. deg. fields • Boötes Field (NGPDWS) – North Galactic Pole • Cetus Field – Roughly 30 degrees from SGP • KPNO and CTIO 4-meters, MOSAIC • Survey detection limits (5σ): • BW, R, I – AB=26 • J,H,K – AB = ~21 • Survey Status • All data obtained • Boötes field public release in October 2004: BWRIK images, single-band and matched catalogs
GALEX Observations of Bootes • GALEX Coverage of Boötes field • DIS (AB = 25 in NUV, FUV) 9 sq. deg. (not yet complete) • UDIS (AB = 26 in NUV, FUV) 1 sq. deg. (soon will have 90,000 seconds!) • DSS (AB = 22.5-24) 1 sq. deg. • Additional U-band data in Boötes field (GALEX/NDWFS collaboration) • Entire field imaged to AB=25 • 1 sq. deg. imaged to AB=26 • Observations planned or taken with Chandra, Spitzer, VLA FIRST, Redshifts from MMT Hectospec (AGES), Gemini GMOS
GALEX-NDWFS Science Star Formation and Extinction Properties of Galaxies at z=1 and 2 • Once high-z populations are isolated, derive LF, extinction corrections, corrected LF, SFR density to compare with z≥3 • Need better redshifts than dropout technique • Spitzer IRAC data to improve SEDs for photo-z, and MIPS data to compare UV/FIR • Use Lyman break in DSS to isolate z~0.6 sample Investigation of Galaxies at Intermediate Redshifts in the AGES sample • Redshifts and multiwavelength data for galaxies with I<20 • NIR + Optical + UV spectral evolution modeling, following to Salim et al. (2004)
Ultraviolet Luminous Galaxies (UVLGs) • First sample described in Heckman et al. (2005) • Matched GALEX All-Sky Imaging Survey IR0.2 with SDSS DR1 galaxies (Seibert et al. 2005) • 74 “UV luminous” galaxies (LFUV>2×1010 L๏)between 0.1<z<0.3 [L* = 4×109L๏ at z=0 (Wyder et al. 2005), L* = 6×1010L๏ at z=3 (Arnouts et al. 2005)] • Co-moving density 10-5 Mpc-3 (>100× less than LBGs at z=3) • Additional properties (metallicities, age indicators, SFRs, stellar mass, etc.) • SDSS value-added catalogs (www.mpa-garching.mpg.de/SDSS)* • Spectral evolution modeling by Salim et al. (2005) • Recently increased sample to 204 using DR2 and IR0.9 *see Kauffmann et al. 2004, Brinchmann et al. 2004, Tremonti et al. 2004
Structural Properties FUV Luminosity vs. Half-light Radius • UVLGs span a large range in size • No correlation between LFUV and size • Strong correlation between IFUV and stellar mass • “Large” UVLGs (IFUV<108 L๏ kpc-2) • Massive (log M*=10.5 – 11.3) • High-mass disk systems with young stellar population • “Compact” UVLGs (IFUV>108 L๏ kpc-2) • Low mass (log M*=9.5 – 10.7) • Mass range similar to LBGs (L๏/kpc2) (kpc) (L๏)
Structural Properties FUV Surface Brightness vs. Stellar Mass • UVLGs span a large range in size • No correlation between LFUV and size • Strong correlation between IFUV and stellar mass • “Large” UVLGs (IFUV<108 L๏ kpc-2) • Massive (log M*=10.5 – 11.3) • High-mass disk systems with young stellar population • “Compact” UVLGs (IFUV>108 L๏ kpc-2) • Low mass (log M*=9.5 – 10.7) • Mass range similar to LBGs (L๏ kpc-2) Compact Large (M๏)
Population Comparison (slide courtesy C. Martin)Large UVLGs, Compact UVLGS, LBGs M* Log LUV Log rUV AUV Log b [O/H] 12 1.5 12 3 2 9 11 1 11 2 1 8.5 10 0.5 10 1 0 8 9 9 9 0 -1 7.5
What’s next for UVLGs? (Multiwavelength Analysis of UVLGPOPulation!) • Larger sample from SDSS DR3 and GR1 • ACS/NICMOS imaging of a subsample • Morphologies • Presence of older stars • Spitzer FIR • Chandra