1 / 13

Modello

Modello. La logica del primo ordine consente di definire un modello di un insieme di formule, ossia una interpretazione che soddisfi ogni formula. Indecidibilità. Un problema è indecidibile se un qualunque algoritmo che tenti di risolverlo è incompleto (non considera tutti i casi) oppure

rune
Download Presentation

Modello

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Modello La logica del primo ordine consente di definire un modello di un insieme di formule, ossia una interpretazione che soddisfi ogni formula

  2. Indecidibilità Un problema è indecidibile se un qualunque algoritmo che tenti di risolverlo è • incompleto (non considera tutti i casi) oppure • scorretto (sbaglia qualcosa) oppure • non termina

  3. Esempio  x DogOwner (x)  ( y OwnerPet (x,y))  Dog(y) • Dog Owner (Fred) È soddisfatta dalla costante Fred • Own Pet (Fluffy) È soddisfatta dalla costante Fluffy Ogni modello che soddisfi le 3 formule deve dedurre che Fluffy è un cane, altrimenti non è un modello

  4. Osservazioni Fred è un DogOwner, ma se ha anche un gatto cosa succede? Si ha una contraddizione poiché non è stato definito nulla riguardo il gatto ed il suo possesso. DogOwner(Fred) OwnPet(Fred,Tom) Cat(Tom) Una volta detto che Tom è un gatto è necessario indicare al sistema che Cat e Dog sono due cosa differenti  z Cat (z)  (Dog(z))

  5. Inconsistenza La base di conoscenza è ancora inconsistente infatti da  x DogOwner (x)  ( y OwnerPet (x,y))  Dog(y) si deduce che, in quanto posseduto da Fred, Tom è Dog Da  z Cat (z)  (Dog(z)) si deduce che essendo Cat, Tomnon è Dog

  6. Problema • Una base di conoscenza deve essere in grado di dedurre la conoscenza implicita e di individuare eventuali errori logici connessi • La logica del primo ordine è uno strumento semanticamente accettabile • Tradurre la logica del primo ordine in un programma eseguibile da una macchina Il problema diventa

  7. Indecidibilità nei KBMS • Per un Knowledge Based Management System (KBMS) calcolare tutte le formule valide di un insieme di formule è un problema indecidibile • Non esiste un algoritmo in grado di risolvere il problema • Nessun linguaggio di programmazione esistente è in grado di risolvere il problema

  8. Linguaggi di programmazione Rappresentazione della conoscenza Basi di Dati Semantica operazionale, denotazionale, ecc. Logica del Primo Ordine Semantica Logica del primo ordine Sistemi di rappresentazione della conoscenza e loro linguaggi Modello Concettuale Diagramma Entità/Relazioni Unified Modeling Language • Reticolare • Gerarchico • Relazionale • A Oggetti • Record • Grafi Modello Logico • Frames • Reti semantiche

  9. Sistemi di rappresentazione della conoscenza • (Knowledge Language) KL – ONE (1980) • LOOM (1985) • Classic ( primi anni 90)

  10. Classic Poiché rappresentare tutta la conoscenza è un problema indecidibile si è pensato di adottare una • Espressività limitata Pertanto Classic comprende • costanti • predicati unari (classi) • predicati binari (legami tra classi) Il problema resta comunque indecidibile

  11. Soluzione adottata da Classic • Costanti • Concetti (Predicati unari) • Ruoli (Predicati binari) • Sintassi • Formule • Asserzioni su individui (concetti, ruoli)

  12. Esempio • Asserzione su individui: Primitivo di Manduria  Vino Rosso in una base di dati sarebbe l’aggiunta di una tupla alla relazione Vino Rosso • Asserzione binaria: Primitivo di Manduria Produttore Cantina Sociale Pliniana Individuo Concetto Ruolo

  13. Definizione di Concetti Vino Rosso = Vino And (Fills Colore Rosso) In una base di dati sarebbe una query Chianti = Vino And (Fills Colore Rosso) And (Fills Provenienza Toscana) La base di conoscenza è in grado di fare deduzioni: Esempio Primitivo  Vino Rosso ruolo individuo

More Related