1.48k likes | 1.63k Views
6. Festéklézerek. Folyadék-lézerek előnyei: Az aktív közeg homogén - szemben a szilárd lézerrel Könnyebb hűteni Nagyobb az aktív anyag sűrűsége, mint gázlézerekben. Leggyakrabban fluoreszkáló szerves színezékeket használnak aktív anyagként. Rodamin B.
E N D
6. Festéklézerek Folyadék-lézerek előnyei: Az aktív közeg homogén - szemben a szilárd lézerrel Könnyebb hűteni Nagyobb az aktív anyag sűrűsége, mint gázlézerekben Leggyakrabban fluoreszkáló szerves színezékeket használnak aktív anyagként
A festéklézerek hangolhatók (azaz a lézerfény hullámhossza folytonosan változtatható). Ok: a lézerátmenet alsó szintje széles (a rezgési és belső forgási energianívók összeolvadnak).
Egyszerűsített Jablonski-diagram S2 T2 S1 T1 S0
Hullámhossz / Å 7000 6000 5000 1.0 ő 80,000 ) a s z v á e l t y i á z n e I m 0.8 n é F s r t e 1 60,000 o t - s m n n ó i c i a c a 0.6 r i p 1 c m - l r n o o u 40,000 e z m m c s i l z 0.4 b x / s a a e e s r m i o r 20,000 v u á á 0.2 l l F S o ( M 0 0 14,000 16,000 18,000 20,000 22,000 -1 Hullámszám / cm Rodamin-B abszorpciós és emissziós szinképe metanolos oldatban
Impulzuslézer - folytonos lézer Az S1 állapot élettartama ~10 ns, ezért intenzív pumpálás kell. Pumpálás: villanólámpa impulzuslézer folytonos lézer
pumpáló tükör R = 100 % vég tükör R = 100 % festéksugár (jet) R = 85 % T = 15% kollimátor R = 100 % hangoló ék stop Folyadéksugaras festéklézer
pumpáló fény festéksugár (jet) T T T T „optikai dióda” hangoló elemek Gyűrűlézer (ring laser)
Tipikus lézersugár energia [W] Oxazine 1 R6G 1.0 Polyphenyl 1 DEOTC-P R101 Sodium HITC-P fluorescein C490 C530 Stilben C450 0.1 0.01 400 500 600 700 800 900 Hullámhossz [nm] Festéklézer működési tartománya különböző festékekkel
Felhasználás: ahol hangolható fényforrás kell. Spektroszkópia Fotokémia Gyógyászat Izotóp elválasztás
7. A lézersugár tulajdonságai és modulációja 7.1. Vonalszélesség 7.2. Polarizáció 7.3. A lézersugár fényessége, intenzitása 7.4. Q-kapcsolás 7.5. Móduscsatolás 7.6. Frekvencia-kettőzés 7.7. Parametrikus oszcilláció
7.1. Vonalszélesség A klasszikus optikai spektroszkópiában polikromatikus fényforrás vanmonokromátor határozza meg a felbontást. A Fourier-transzformációs spektroszkópiában a max. opt. útkülönbség határozza meg a felbontást. A lézer-spektroszkópiában a lézer vonalszélessége határozza meg a felbontást.
L = ml/2 l = 2L / m = c/n Axiális módusok távolsága: c/2L
A félhullámok száma a rezonátoron belül: Pl. He-Ne lézer l = 632,8 nm, ha L = 15 cm:
A sáv alakját és szélességét 3 tényező határozza meg 1. Ütközési kiszélesedés2. Doppler-kiszélesedés3. Heisenberg-féle határozatlansági reláció
1. Ütközési kiszélesedés (nyomás-kiszélesedés) Amolekulák közötti ütközés során perturbálódik az elektron-felhője, ami az energiaszintek kismértékű eltolódásához vezet. A sáv alakját Lorentz-görbe írja le. Félérték-szélessége arányos a nyomással. tc: az ütközések közötti átlagos idő (a közepes szabad úthossz és az átlagsebesség hányadosa)
n0: frekvencia 0 sebesség esetén v: az atom (molekula) sebességének az optikai tengely irányába eső komponense 2. Doppler kiszélesedés Afrekvencia függ a kibocsájtó és az észlelő egymáshoz viszonyított sebességétől. A sáv alakját Gauss-görbe írja le:
Heisenberg: a hely és az impulzus egyidejű mérésének korlátja: 3. Heisenberg-féle határozatlansági reláció Álló helyzetű és a környezetével nem kölcsönható atom vagy molekula által kibocsájtott fény sávszélessége: természetes sávszélesség.
Mivel DE = hDn, Hasonló összefüggés írható fel az energiára és az időre: Ha a gerjesztett állapot élettartama véges, az energiája nem adható meg pontosan. Természetes sávkiszélesedésnek hívjuk (Fourier-limit). A sáv alakját Lorentz-görbe írja le.
Példa: tipikus He-Ne lézer Nyomás-kiszélesedés: 0,64 MHzDoppler-kiszélesedés: 1700 MHzFourier-limit: 20 MHz Átszámítás frekvencia és hullámszám között: 1cm-1 30 GHz
7.2. Polarizáció A lézerek fénye általában polarizált. Ok: a rezonátorban van olyan elem, (pl. ablak) amelynek a reflexiója eltérő a kétféle (függőleges és vízszintes ) polrizációs síkú fényre nézve. Nézzük meg nem-polarizált beeső fény szétválását dielektrikum határfelületén. Ep: a beesési síkba eső komponens Es: a beesési síkra merőleges komponenns
a) Es A beeső fény a saját rezgési síkjában indukál dipólusokat, tehát a síkra merőleges komponens (Es) megőrzi polarizációs irányát.
b) Ep Az Ep komponens a megtört sugár irányára merőleges dipólusokat indukál. Ebből a visszavert sugárrba relatíve kisebb hányad kerül, mint Es-ből, mivel kicsi a terjedési irányra merőleges hozzájárulás.
c) Ep Speciális eset, ha a visszavert és megtört sugár egymásra merőleges. Ekkor a visszavert sugárnak nem marad Ep komponense. A visszavert sugár teljesen polarizált. Ha csak Ep komponense van a beeső fénynek, akkor a visszavert sugár intenzitása 0, azaz nincs reflexió Brewster-szög
Lézercső (v. lézerrúd) alakja: Vagy: Ilyenkor a lézerfény a papír síkjában polarizált.
a a b A Brewster-szög kiszámítása: Snellius-Descartes törvény: b = 900-a sinb = cosa
a: divergencia (széttartás) szöge r a R 7.3. A lézersugár fényessége, intenzitása Fényesség:egységnyi felületen és egységnyi térszögben kisugárzott teljesítmény: W/(m2sterad) Gömbfelület: 4R2p Körfelület:r2p = R2psin2a Kis szögek esetén:Térszög = (körfelület/ gömbfelület)*4p = (sin2a)*p
Példa: He-Ne lézer, teljesítmény: 3 mW , divergencia-szög: 3*10-3 fok nyalábsugár: 0,3 mm = 3*10-4 m A nap fényessége: 1,3·106 W/(m2sr)
r w0 w z Intenzitás-eloszlás: Ha a lézer TEM00 transzverzális módusban működik, akkor a keresztmetszet mentén a fókuszált lézernyaláb intenzitás-eloszlása Gauss-függvénnyel írható le:
I: felületi teljesítménysűrűség w: nyalábsugár (az a sugár, amelynél a térerősség e-ed részére csöken) w0: nyalábsugár a fókuszsíkban w és w0: kapcsolata:
8. Abszorpciós lézerspektroszkópia Érdemes-e lézereket használni fényforrásnak? Kereskedelmi készülékekben nem lézer a fényforrás (kivéve Raman).
Lézeres abszorpció-mérés: Nem alkalmazzák gyakran, mert a hagyományos módszerek érzékenyebbek. (A lézerek „zajosak”)
Nagyfelbontású spektroszkópia (lásd későbbi). Kis koncentrációk mérése (a lézersugár kollimált-ságát használjuk ki). a)Többszörös reflexiójú mérőcella
Speciális technikák 5.1. Differenciális abszorpció 5.2. Rezonátoron belüli abszorpció
8.1. Differenciális abszorpció Két esetben a hagyományos abszorpciós spektroszkópiát nem tudjuk eredményesen alkalmazni. a) Túl kicsi koncentráció b) Nem tudjuk a mintát egy küvettába csalogatni. Pl. légkör szennyezőit akarjuk mérni.
Két egymáshoz nagyon közeli frekvenciájú lézerfényt használunk. Az egyiken elnyel, a másikon átereszt az anyag. Rayleigh szórás stb. közel azonos a két fénysugárra. Jól használható az atmoszféra összetevőinek mérésében: ózon, CO2, CO, OH, SO2, CH4, stb. LIDAR: LIght Detection And Ranging
Megfelelő -jú lézer impulzust az ég felé kilövünk. Egy része visszaszóródik. (Mie-szórás pl. vízcseppeken, Rayleigh-szórás molekulákon). Ugyanakkor részben elnyelődik, ha a hullámhossza megegyezik a vizsgált molekula elnyelési hullám-hosszával. 10 ns-os impulzusokkal ~3 m-es térbeli felbontás érhető el.
DR R Kapunyitás: A két jel különbségéből az R és R+R közötti elnyelésre következtethetünk. Légszennyezési térképet lehet készíteni pl. NO2 ppm tartományban 5 km magasságig.
8.2. Rezonátoron belüli abszorpció „Intracavity absorption” Minta a rezonátor belsejében - megnő az érzékenység. Négy tényező okozhat érz. növekedést
a) A lézer-rezonátorban sokkal nagyobb a fényintenzitás, mint azon kívül. Pl. kilépő tükör R = 98 % végtükör R = 100 % 50-szeres fényintenzitás a rezonátorban - 50-szerannyi foton nyelődik el.(egy foton átlagosan 50-szer megy végig a rezonátoron)
Ennek a módusnak az intenzitása jelentősen lecsökkenAz össz-telj. nem változik c) Módusok versengése.
d) Gyűrű-lézerben kétirányú oszcilláció. Ha az egyik irányban kicsit megnő a veszteség, nagyon lecsökken a telj.
Hänsch és mtsai (1972) 105-szeres érz. növekedést értek el. 108 molekula/cm3
9. Lézerindukált fluoreszcencia 9.1. Készüléktípusok9.2. Az érzékenység becslése9.3. Felhasználás