1 / 37

Secure and Secure-dominating Set of Cartesian Product Graphs

Secure and Secure-dominating Set of Cartesian Product Graphs. Kai-Ping Huang and Justie Su-Tzu Juan Department of Computer Science and Information Engineering National Chi-Nan University. Outline. Introduction S ecure set S ecure-dominating set S ecure set Preliminary Main result

rupert
Download Presentation

Secure and Secure-dominating Set of Cartesian Product Graphs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Secure and Secure-dominating Set of Cartesian Product Graphs Kai-Ping Huang and Justie Su-Tzu Juan Department of Computer Science and Information Engineering National Chi-Nan University

  2. Outline • Introduction • Secure set • Secure-dominating set • Secure set • Preliminary • Main result • Secure-dominating set • Preliminary • Main result • Conclusions 2

  3. Introduction N[S] v N(v) S Def: Let G = (V,E) be a graph. Ifv V and S ⊆ V : 1. N(v) ={u V : vu E}. 2. N[v]= N(v) ∪{v}. 3. N(S) =∪vSN(v). 4. N[S]= N(S) ∪ S.

  4. Introduction A(u) = {2} A(v) = {1, 3} A(u) ={1, 2} A(v) ={3} G S u 2 D(u) = {u, v} D(v) = ∅ D(u) ={u} D(v) ={v} 1 v 3 Def: 5. A : S → Ƥ (V(G) − S) is called an attack on S (in G) if A(u) ⊆ N(u) − S for all uS and A(u) ∩ A(v) = ∅ for all u, vS, u  v. 6. D : S → Ƥ (S) is called a defense of S if D(u) ⊆ N[u] ∩ S for all uS and D(u) ∩ D(v) = ∅ for all u, vS, u  v. 4

  5. Introduction S G u 2 1 v 3 Def: 7. secure set : All attack A on S, there exists a defense of S corresponding to A. 8. s(G) =min{|S| : S is a secure set of G}.

  6. Introduction G S Def: 9. Dominating set:G if N[S] = V(G). 10. Secure-dominatingset : S is a secure set of G that is also adominating set ofG. 11. γs(G)=min{|S| : S is a secure-dominating set of G}.

  7. Introduction [1] R. C. Brigham, R. D. Dutton, S. T. Hedetniemi, “Security in graphs,” Discrete Appl. Math., 155 (2007), 1708-1714. [2] Chia-Lang Chang, Tsui-Ping Chang, David Kuo, “Secure and secure-dominating set of graphs,” National Dong Hwa University Applied Mathematics, Manuscript.

  8. Secure set - Preliminary • Proposition 1. [1] If S is a secure set of G, then for each v in S,|N[v] ∩ S| ≥ |N(v) − S|. • Corollary 2.[1] If S1 and S2 are vertex disjoint secure sets in the same graph, then S1 ∪ S2 is a secure set.

  9. Secure set - Preliminary • Proposition 3. [1] s(Pm × Pn) = min{m, n, 3}. P3×P2P5×P5 s(G) = 2 s(G) =3

  10. Secure set - Main result • Theorem 4. 1 < n1  n2  …  nk1  nk 1. Whenn1 = n2 =2, s(Pn1 P n2 …  Pnk)  4n3  …  nk2 2. When2 < n2, s(Pn1 P n2 …  Pnk)  3n1  n2  …  nk2

  11. Secure set - Main result • s(Pn1×Pn2×Pn3), n1n2n3 P2×P2×P2 P2×P3×P3 P3×P3×P3 P2×P2×P3 P2×P3×P4 P3×P3×P4 … … …

  12. Secure set - Main result • s(Pn1×Pn2×Pn3), n1n2  n3 G = P4×Pn2×Pn3, s(G)  12 G = P5×Pn2×Pn3, s(G)  15 G = Pn1×Pn2×Pn3, s(G)  3n1 …

  13. Secure set - Main result • Lemma 5. 1. When n1 = n2 =2, s(Pn1Pn2Pn3)  4 2. When 2 < n2, s(Pn1Pn2Pn3)  3n1 Pn1 Pn2 … Pnk = (Pn1 Pn2 … Pnk2 ) Pnk1 Pnk 1. Whenn1 = n2 =2, s(Pn1 P n2 … Pnk)  4n3  …  nk2 2. When2 < n2, s(Pn1 P n2 … Pnk)  3n1  n2  …  nk2

  14. Secure set - Main result • Theorem 6. [1] s(Km) = K7 K4

  15. Secure set - Main result • Theorem 7. 1.When mk1 is even, 2.When mk1 is odd, • Km1 K m2 … Kmk1 Kmk = (Km1 K m2 … Kmk1)  Kmk

  16. Secure set - Main result • Km1 K m2 if m1 odd even a b l Km2 c m2 − l Km1

  17. Secure set - Main result • Lemma 8. 1.When m1 is even, 2.When m1 is odd, Km1 K m2 … Kmk1 Kmk = (Km1 K m2 … Kmk1) Kmk 1.When mk1 is even, 2.When mk1 is odd,

  18. Secure-dominating set- Preliminary • Theorem 9. [2] For any graph G with |V(G)| = n, γs(G)≥n/2. • Theorem 10. [2] For all n ≥ 2,γs(Pn) = n/2. • Corollary 11. [2] 1. γs(G × Pn) ≤ n/2 |V(G)|. 2. When n is even: • γs(G × Pn) = n/2 |V(G)|. • V(Pn) = {v1,v2, ··· ,vn} , S = {(u, vi): u ∈ V(G), i ≡ 2, 3 (mod 4)} is a secure-dominating set. P5× P8

  19. Secure-dominating set- Preliminary • Lemma 12. [2] For all n ≥ 1, S = {(2, j):1 ≤ j ≤ n}∪{(3, j):1 ≤ j ≤ n, j ≡ 1(mod 2)} is a secure-dominating set of P3 × Pn. • Lemma 13. [2] For all n ≥ 1, S = {(i, j): i= 2, 4, 1 ≤ j ≤ n}∪{(3, j):1 ≤ j ≤ n, j ≡ 1(mod 2)} is a secure-dominating set of P5 × Pn. • Theorem 14. [2] For all m, n ≥ 2,γs(Pm × Pn) = mn/2. P3× P7 P7 × P7(P3P4) × P7

  20. Secure-dominating set- Preliminary wA(v2) = 0 Def: wA(v) = 1 − |A(v)| for all v ∈ S. • Lemma 16. [2] 1. wA(v) ∈ {−1, 0, 1}. 2. = k ≥ 1, 1 ≤ i ≤ k. 3. Vertex disjoint paths Pi, wA(vi,1) = 1,wA(vi,li ) = −1, and wA(vi,j ) = 0 for all i, j, 1 ≤ i ≤ k, 2 ≤ j ≤ li − 1. There exists a defense D of S corresponding to A. wA(v1) = 1 wA(v3) = 1

  21. Secure-dominating set- Main result • Theorem 17. γs(Pn1 Pn2 … Pnk) =

  22. Secure-dominating set- Main result • P2×P4×P6 = P2×G, G = P4×P6, γs(P2×P4×P6) = 24 • P3×P4×P5 = P4×G, G = P3×P5, γs(P3×P4×P5) = 30

  23. Secure-dominating set- Main result • Pn1 Pn2 …  Pnk = (Pn1 P n2 …  Pnk1)  Pnk If nk= 4l+1, If nk= 4l+3, … Pn1 P n2 …  Pnk1 |S*(G)| = n1n2…nk/2 … Pn1 P n2 …  Pnk1

  24. Secure-dominating set- Main result P3×P5× P7× P9× P11×P13 = (P3×P5× P7× P9× P11)×P13 P3×P5× P7× P9× P11 P3×P5× P7× P9 P3×P5 P3×P5× P7 |S*(G)| = (3 × 5 × 7 × 9 × 11 × 13)/2

  25. Secure-dominating set- Main result • Lemma 18. In Pn1 Pn2 … Pnk, S* is selected as previous rules, for any black super node R, there are at most four red super node Ri, 1 i 4, with wA(Ri) = 0, adjacet to R. If for all x  R − S*, x A(u), for some u Ri. There exists a defense D of S* corresponding to A. S*(P5 P5  Pn) 

  26. Secure-dominating set- Main result • Proof: Pn1 Pn2 …  Pnk when n1, n2, …, nkare odd. • Case 1 nk= 4l + 3,nk1= 4m + 3 • Case 2 nk= 4l + 3,nk1= 4m + 1 • Case 3 nk= 4l + 1,nk1= 4m + 3 • Case 4 nk= 4l + 1,nk1= 4m + 1

  27. Secure-dominating set- Main result • Proof: S*(Pn1 Pn2) is secure If S*(Pn1 Pn2 …  Pnk-1) is secure then S*(Pn1 Pn2 … Pnk):

  28. Secure-dominating set- Main result • Proof: Case 1:If nk = 4l+3, nk–1 = 4m+3 … … … … … … … ……

  29. Secure-dominating set- Main result • Proof: Case 1:

  30. Secure-dominating set- Main result |S*(G)| = (n1 n2 … nk)/2 • Theorem 17. γs(Pn1 Pn2 … Pnk) =

  31. Secure-dominating set - Main result • Theorem 19. [2] K7 K4

  32. Secure-dominating set- Main result • Theorem 20. γs(Km1 K m2 … Kmk1 Kmk) =

  33. Secure-dominating set- Main result • K2 K4 K6 = K2 (K4 K6) • K3 K4 K5 K6 = K4 (K3 K5  K6) K3 K5  K6 K6 K6 K6 K6 K3 K4 K5 K6 K6 K6 K6 K6 K2 K4 K6

  34. Secure-dominating set- Main result • Km1 K m2 … Kmk1 Kmk = (Km1 K m2 … Kmk1)  Kmk Km1 K m2 … Kmk1=(Km1 K m2 … Kmk2)  Kmk1 Km1 …  Kmk K m1 …  Kmk-1 … … … … Km1

  35. Secure-dominating set- Main result • K3 K5 K7 = (K3 K5)  K7 K3 K5 K7 K3 K5 K3 |S*(G)| = (3 × 5 × 7)/2

  36. Secure-dominating set- Main result • Proof: S*(Km1) is secure If S*(Km1 K m2 …  Kmk1) is secure then S*(Km1 K m2 …  Kmk): Kmk ok Km1 K m2 …  Kmk1 … … … Km1 K m2 …  Kmk1 Km1 K m2 …  Kmk1

  37. Conclusions The Results of Previous Scholar Main Results

More Related