1 / 12

Bhuyan, Sanjib, and Lopez Oligopoly power in the food and tobacco industries

Bhuyan, Sanjib, and Lopez Oligopoly power in the food and tobacco industries. Method: Theoretical Model Specify a general profit function Derive several parameters related to MARKET POWER. Empirical Model Specify a specific profit function, demand function Collect data

russell
Download Presentation

Bhuyan, Sanjib, and Lopez Oligopoly power in the food and tobacco industries

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bhuyan, Sanjib, and Lopez Oligopoly power in the food and tobacco industries Method: Theoretical Model Specify a general profit function Derive several parameters related to MARKET POWER Empirical Model Specify a specific profit function, demand function Collect data Estimation of parameters - statistical methods

  2. Method: Theoretical Model -Profit function Differentiate profit with respect to output

  3. Method: Theoretical Model: Parameters Output elasticity of cost - reciprocal of “economies of size” eg. for a 1% increase in output, is there more or less percent change in cost?

  4. Method: Theoretical Model: Lerner Index (L) Measures degree of the exercise of oligopoly power

  5. Specify a Translog Cost function (Transcendental-logarithmic)Ln(C) = f(W,Y,T) C = industry total cost Y = industry output T = time trend W = vector of input prices (wi) Method: Empirical Model Logarithmic differentiation (Shephard’s Lemma) factor (input) share equations

  6. Specify a Cobb-Douglas output demand function (derived demand facing industry) Method: Empirical Model

  7. Statistical methods - estimate the parameters of a system of equations Method: Estimation 4 input share equations (KLEM) (derived from C=C (W,Y,T) 1 demand function (Cobb-Douglas) 1 equation representing profit max criterion Annual data 1972 – 1987 40 food and tobacco processing industries: SIC 4 digit level L - Lerner index  - elasticity of returns to scale  - conjectural variation elasticity for the industry ( = 0 => no strategic activity e.g. price taking)  - output demand elasticity

  8. Testing the Lerner index • H0: L = 0 • Reject => evidence of oligopoly power (price distortion) Results: Rejected - 37 of 40 industries (average L = 0.33) "degree of oligopoly power is significant"

  9. Other Parameters •  - conjectural variation elasticity • - mostly greater than zero and significant • - evidence of strategic behaviour •  - output demand elasticity – inelastic in all cases •  - elasticity of scale ..... mostly increasing returns e.g.  > 1 Results: Constant returns to scale - CRS rejected for 33 industries Ho:  = 0 20 industries – increasing returns  > 1 13 industries – decreasing returns  > 1

  10. Statistical Significance – high in most cases

  11. Aggregate Industries SIC 2: - Food Industries - Tobacco Industries - Food & Tobacco

  12. Comparisons with Previous Research

More Related