1 / 30

Polygons

Polygons. A many sided figure.

rvan
Download Presentation

Polygons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Polygons A many sided figure

  2. The cross section of a brilliant-cut diamond forms a pentagon. The most beautiful and valuable diamonds have precisely cut angles that maximize the amount of light they reflect.A pentagon is a type of polygon.Prefixes are used to name different types of polygons.

  3. Polygon – a closed plane figure formed by three or more segments.Regular polygon – a polygon with congruent sides and angles.Prefixes used to name polygons: tri-, quad-, penta-, hexa-, hepta-, octa-, nona-, deca-Polygons are named (classified) based on the number of sides.

  4. PolygonsProperties of polygons, interior angles of polygons including triangles, quadrilaterals, pentagons, heptagons, octagons, nonagons, and decagons. Properties of Triangles Triangle – 3-sided polygon The sum of the angles in any triangle is 180° (triangle sum theorem)

  5. The formula we use to find the sum of the interior angles of any polygon comes from the number of triangles in a figure

  6. First remember that the sum of the interior angles of a polygon is given by the formula 180(n-2).A polygon is called a REGULAR when all the sides are congruent and all the angles are congruent.The picture shown to the left is that of a RegularPentagon. We know that to find the sum of its interior angles we substitute n = 5 in the formula and get:180(5 -2) = 180(3) =540°

  7. Regular triangles - EquilateralAll sides are the same length (congruent) and all interior angles are the same size (congruent).To find the measure of the interior angles, we know that the sum of all the angles equal 180°, and there are three angles.So, the measure of the interior angles of an equilateral triangle is 60°.

  8. Quadrilaterals – squaresAll sides are the same length (congruent) and all interior angles are the same size (congruent)To find the measure of the interior angles, we know that the sum of the angles equal 360°, and there are four angles, so the measure of the interior angles are 90°.

  9. Pentagon – a 5-sided polygonTo find the sum of the interior angles of a pentagon, we divide the pentagon into triangles. There are three triangles and because the sum of each triangle is 180° we get 540°, so the measure of the interior angles of a regular pentagon is 540°

  10. Hexagon – a 6-sided polygonTo find the sum of the interior angles of a hexagon we divide the hexagon into triangles. There are four triangles and because the sum of the angles in a triangle is 180°, we get 720°, so the measure of the interior angles of a regular hexagon is 720°.

  11. Octagon – an 8-sided polygonAll sides are the same length (congruent) and all interior angles are the same size (congruent).What is the sum of the angles in a regular octagon?

  12. Nonagon – a 9-sided polygonAll sides are the same length (congruent) and all interior angles are the same size (congruent).What is the sum of the interior angles of a regular nonagon?

  13. Decagon – a 10-sided polygonAll sides are the same length (congruent) and all interior angles are the same size (congruent).What is the sum of the interior angles of a regular decagon?

  14. Using the pentagon example, we can come up with a formula that works for all polygons.Notice that a pentagon has 5 sides, and that you can form 3 triangles by connecting the vertices. That’s 2 less than the number of sides. If we represent the number of sides of a polygon as n, then the number of triangles you can form is (n-2). Since each triangle contains 180°, that gives us the formula:sum of interior angles =180(n-2)

  15. Warning ! • Look at the pentagon to the right. Do angle E and angle B look like they have the same measures? You’reright---they don’t. This pentagon is not a regular pentagon. • If the angles of a polygon do not all have the same measure, then we can’t find the measure of any one of the angles just by knowing their sum.

  16. Using the Formula Example 1: Find the number of degrees in the sum of the interior angles of an octagon. An octagon has8sides. Son = 8. Using our formula,that gives us180(8-2) = 180(6) =1080°

  17. Example 2: How many sides does a polygon have if the sum of its interior angles is 720°?Since, this time, we know the number of degrees, we set the formula equal to 720°, and solve for n.180(n-2) = 720set the formula = 720°n - 2 = 4divide both sides by 180 n = 6add 2 to both sides

  18. Names of Polygons Triangle 3 sides Quadrilateral 4 sides Pentagon 5 sides Hexagon 6 sides Heptagon or Septagon 7 sides Octagon 8 sides Nonagon or Novagon 9 sides Decagon 10 sides

  19. Practice with Sum of Interior Angles • The sum of the interior angles of a hexagon. • 360° • 540° • 720°

  20. How many degrees are there in the sum of the interior angles of a 9-sided polygon?a) 1080°b) 1260°c) 1620°

  21. If the sum of the interior angles of a polygon equals 900°, how many sides does the polygon have?a) 7b) 9c) 10

  22. How many sides does a polygon have if the sum of its interior angles is 2160°?a) 14b) 16c) 18

  23. What is the name of a polygon if the sum of its interior angles equals 1440°?a) octagonb) decagonc) pentagon

  24. Special Quadrilaterals 4-sided figures

  25. Quadrilaterals with certain properties are given additional names.

  26. A square has 4 congruent sides and 4 right angles.

  27. A rectangle has 4 right angles.

  28. A parallelogram has 2 pairs of parallel sides.

  29. A rhombus has 4 congruent sides.

  30. A kite has 2 sets of adjacent sides that are the same length (congruent) and one set of opposite angles that are congruent.

More Related