1 / 16

The general structural equation model with latent variates

The general structural equation model with latent variates. Hans Baumgartner Penn State University. x. y. y. y. x. y. x. x. l 21. l 63. l 21. l 41. l 42. l 62. l 73. l 31. e. e. d. e. d. d. e. e. d. d. d. d. e. q 44. q 33. q 22. q 11. q 66. q 77. q 11. q 33.

saburo
Download Presentation

The general structural equation model with latent variates

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The general structural equation model with latent variates Hans Baumgartner Penn State University

  2. x y y y x y x x l21 l63 l21 l41 l42 l62 l73 l31 e e d e d d e e d d d d e q44 q33 q22 q11 q66 q77 q11 q33 q44 q55 q66 q55 q22 The general structural equation model j11 d1 x1 1 x1 y11 y22 y33 d2 x2 g11 j21 z1 z2 z3 j22 d3 x3 1 b21 b32 g12 j31 h1 x2 h2 h3 d4 x4 1 1 1 j32 g13 y5 y6 y7 d5 x5 1 y1 y2 y3 y4 e5 d6 e6 x3 x6 e1 e3 e2 e4 d7 x7 j33

  3. x y y y x y x x l21 l63 l21 l41 l42 l62 l73 l31 e e d e d d e e d d d d e q44 q33 q22 q11 q66 q77 q11 q33 q44 q55 q66 q55 q22 The general structural equation model j11 d1 x1 1 x1 y11 y22 y33 d2 x2 g11 j21 z1 z2 z3 j22 d3 x3 1 b21 b32 g12 j31 h1 x2 h2 h3 d4 x4 1 1 1 j32 g13 y5 y6 y7 d5 x5 1 y1 y2 y3 y4 e5 d6 e6 x3 x6 e1 e3 e2 e4 d7 x7 j33

  4. x y y y x y x x l21 l63 l21 l41 l42 l62 l73 l31 e e d e d d e e d d d d e q44 q33 q22 q11 q66 q77 q11 q33 q44 q55 q66 q55 q22 The general structural equation model j11 d1 x1 1 x1 y11 y22 y33 d2 x2 g11 j21 z1 z2 z3 j22 d3 x3 1 b21 b32 g12 j31 h1 x2 h2 h3 d4 x4 1 1 1 j32 g13 y5 y6 y7 d5 x5 1 y1 y2 y3 y4 e5 d6 e6 x3 x6 e1 e3 e2 e4 d7 x7 j33

  5. x y y y x y x x l21 l63 l21 l41 l42 l62 l73 l31 e e d e d d e e d d d d e q44 q33 q22 q11 q66 q77 q11 q33 q44 q55 q66 q55 q22 The general structural equation model j11 d1 x1 1 x1 y11 y22 y33 d2 x2 g11 j21 z1 z2 z3 j22 d3 x3 1 b21 b32 g12 j31 h1 x2 h2 h3 d4 x4 1 1 1 j32 g13 y5 y6 y7 d5 x5 1 y1 y2 y3 y4 e5 d6 e6 x3 x6 e1 e3 e2 e4 d7 x7 j33

  6. Measurement model (Appendix A)

  7. Latent variable model (Appendix A)

  8. Why is it important to take into account measurement error? Consider the following model: Correction for attenuation:

  9. Why is it important to take into account measurement error? (cont’d) The true effect of ξ on η is: The effect of x on y is:

  10. Model identification • Necessary condition for identification • Two-step rule: • Measurement model • Latent variable model • Null B rule • Recursive rule • Rank condition • Empirical identification tests

  11. SIMPLEX specification Title A general structural equation model (explaining coupon usage) Observed Variables id be1 be2 be3 be4 be5 be6 be7 aa1t1 aa2t1 aa3t1 aa4t1 bi1 bi2 bh1 Raw Data from File=d:\m554\eden2\sem.dat Latent Variables INCONV REWARDS ENCUMBR AACT BI BH Sample Size 250 Relationships be1 = 1*INCONV be2 = INCONV be3 = 1*REWARDS be4 = REWARDS be5 = 1*ENCUMBR be6 = ENCUMBR be7 = ENCUMBR aa1t1 = 1*AACT aa2t1 = AACT aa3t1 = AACT aa4t1 = AACT bi1 = 1*BI bi2 = BI bh1 = 1*BH AACT = INCONV REWARDS ENCUMBR BI = AACT BH = BI Set the Error Variance of bh1 to zero Options sc rs mi wp Path Diagram End of Problem

  12. Goodness of Fit Statistics: Degrees of Freedom = 70 Minimum Fit Function Chi-Square = 93.63 (P = 0.031) Normal Theory Weighted Least Squares Chi-Square = 92.60 (P = 0.037) Estimated Non-centrality Parameter (NCP) = 22.60 90 Percent Confidence Interval for NCP = (1.60 ; 51.68) Minimum Fit Function Value = 0.38 Population Discrepancy Function Value (F0) = 0.091 90 Percent Confidence Interval for F0 = (0.0064 ; 0.21) Root Mean Square Error of Approximation (RMSEA) = 0.036 90 Percent Confidence Interval for RMSEA = (0.0096 ; 0.054) P-Value for Test of Close Fit (RMSEA < 0.05) = 0.89 Expected Cross-Validation Index (ECVI) = 0.65 90 Percent Confidence Interval for ECVI = (0.57 ; 0.77) ECVI for Saturated Model = 0.84 ECVI for Independence Model = 12.16 Chi-Square for Independence Model with 91 Degrees of Freedom = 2999.42 Independence AIC = 3027.42 Model AIC = 162.60 Saturated AIC = 210.00 Independence CAIC = 3090.72 Model CAIC = 320.85 Saturated CAIC = 684.75 Normed Fit Index (NFI) = 0.97 Non-Normed Fit Index (NNFI) = 0.99 Parsimony Normed Fit Index (PNFI) = 0.75 Comparative Fit Index (CFI) = 0.99 Incremental Fit Index (IFI) = 0.99 Relative Fit Index (RFI) = 0.96 Critical N (CN) = 268.08 Root Mean Square Residual (RMR) = 0.13 Standardized RMR = 0.049 Goodness of Fit Index (GFI) = 0.95 Adjusted Goodness of Fit Index (AGFI) = 0.92 Parsimony Goodness of Fit Index (PGFI) = 0.63

  13. Measurement Equations aa1t1 = 1.00*AACT, Errorvar.= 0.68 , R2 = 0.63 (0.075) 9.06 aa2t1 = 1.04*AACT, Errorvar.= 0.44 , R2 = 0.74 (0.069) (0.058) 14.97 7.70 aa3t1 = 0.85*AACT, Errorvar.= 0.76 , R2 = 0.53 (0.070) (0.077) 12.14 9.82 aa4t1 = 1.10*AACT, Errorvar.= 0.59 , R2 = 0.71 (0.076) (0.072) 14.58 8.20 bi1 = 1.00*BI, Errorvar.= 0.97 , R2 = 0.75 (0.14) 7.04 bi2 = 1.09*BI, Errorvar.= 0.25 , R2 = 0.93 (0.058) (0.13) 18.91 1.95 bh1 = 1.00*BH,, R2 = 1.00

  14. Measurement Equations • be1 = 1.00*INCONV, Errorvar.= 0.56 , R2 = 0.79 • (0.17) • 3.32 • be2 = 0.98*INCONV, Errorvar.= 0.61 , R2 = 0.77 • (0.087) (0.16) • 11.32 3.71 • be3 = 1.00*REWARDS, Errorvar.= 0.45 , R2 = 0.75 • (0.18) • 2.55 • be4 = 0.82*REWARDS, Errorvar.= 0.96 , R2 = 0.48 • (0.12) (0.15) • 6.89 6.63 • be5 = 1.00*ENCUMBR, Errorvar.= 2.78 , R2 = 0.24 • (0.28) • 9.97 • be6 = 1.73*ENCUMBR, Errorvar.= 1.85 , R2 = 0.59 • (0.27) (0.34) • 6.30 5.49 • be7 = 1.48*ENCUMBR, Errorvar.= 1.92 , R2 = 0.50 • (0.24) (0.28) • 6.30 6.87

  15. Structural Equations AACT = - 0.28*INCONV + 0.44*REWARDS - 0.050*ENCUMBR, Errorvar.= 0.69 , R2 = 0.42 (0.058) (0.081) (0.097) (0.11) -4.77 5.42 -0.51 6.52 BI = 1.10*AACT, Errorvar.= 1.53 , R2 = 0.48 (0.11) (0.20) 10.04 7.73 BH = 0.49*BI, Errorvar.= 1.41 , R2 = 0.34 (0.049) (0.13) 10.10 10.78

  16. Modification Indices for BETA AACT BI BH -------- -------- -------- AACT - - 11.05 1.52 BI - - - - 2.34 BH 2.34 - - - - Modification Indices for GAMMA INCONV REWARDS ENCUMBR -------- -------- -------- AACT - - - - - - BI 5.57 3.07 5.15 BH 1.61 12.67 2.78

More Related