1 / 23

Sansak Nakavisut Principle supervisor: Dr Ron Crump Co-supervisor: Dr Hans Graser

Estimation of genetic parameters between single -record and multiple -record traits using ASREML. Sansak Nakavisut Principle supervisor: Dr Ron Crump Co-supervisor: Dr Hans Graser. Outline. Introduction Univariate analysis of single-record traits ( eg ADG )

saeran
Download Presentation

Sansak Nakavisut Principle supervisor: Dr Ron Crump Co-supervisor: Dr Hans Graser

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Estimation of genetic parameters between single-record and multiple-record traits using ASREML Sansak Nakavisut Principle supervisor: Dr Ron Crump Co-supervisor: Dr Hans Graser

  2. Outline • Introduction • Univariate analysis of single-record traits (egADG) • Bivariate analysis of 2 (single-record) traits (eg ADG & FI) • Univariate analysis of multi-record traits (eg NBA) • Bivariate analysis of single & multi-record traits • Problems / solutions • Demonstration

  3. Introduction • Aim: to demonstrate how to estimate genetic parameters from a more complex model using ASREML • Data set up to match the model • Concept of multi-record traits (repeated measurements of the same traits) • Problems you may encounter in bivariate analysis • and solutions

  4. Univariate analysis of single-record trait • One record per animal during the life time • eg BW, TN, BF, FCR, ADG, FI, etc., • Genetic parameters; ha2, hm2 , c2, ram , estimable and reliable or not, depending on data structure • Std. error will reflect data structure (Qnt Qly)

  5. Example: univar. Of ADG “ADG.as” (COMMAND FILE) Analysis of production traits Anim !P Sire !P Dam !P Br 2 !A Sex 2 !A HYS 2 !A ADG FI test.ped !ALPHA demo.dat !MVINCLUDE !DOPART $1 !PART 1 ADG ~ mu Br Sex !r Anim !f HYS “demo.dat” (DATA FILE) TT2H0453 TT2E4326 TT2E2627 LR M TK942 497.75 1.63 TT2H0456 TT2E4326 TT2E2627 LR F TK942 515.17 1.88 TT2H0483 TT2C1953 TT2E4315 LR F TK942 490.48 1.85 TT2H0484 TT2C1953 TT2E4315 LR F TK942 417.43 1.77 TK1H0246 IR1E0003 IR1E0137 LW M TK942 561.45 1.76 TK1H0239 IR1E0030 IR1E0139 LW M TK942 538.46 1.71 TK1H0228 TK1G0056 TK1G0042 LW M TK942 476.68 1.56 TT2H0495 TT2E4326 TT2F4908 LR F TK942 456.94 1.82 TT1H7156 TT1F4957 TT1F4990 LW M TK942 528.25 1.93 TT1H7157 TT1F4957 TT1F4990 LW F TK942 494.59 1.69 TK1H0226 TK1G0056 TK1G0042 LW M TK943 505.18 1.79 TK1H0224 TK1G0056 TK1G0042 LW M TK943 466.32 1.61 … “test.ped” (PEDIGREE FILE) RC3K2178 . . RC3L1647 . . RC3L2652 . . RC3L2731 RC3-0017 RC3-278-9 RC3L3109 RC3-1244 RC3-1274 RC3M3292 RC3K2210 RC3-1798 RC3M3424 RC3L2765 RC3-0567 ……

  6. Results: univariate analysis (ADG) “ADG1.asr” Source Model terms Gamma Component Comp/SE % C Anim 9621 9621 1.10486 1129.25 16.25 0 P Variance 7665 7530 1.00000 1022.08 23.70 0 P “ADG1.pin” F Vp 1 + 2 H h2 1 3 “ADG1.pvc” 3 Vp 1 2151. 44.39 h2 = Anim 1/Vp 1 3= 0.5249 0.0245

  7. Bivariate analysis of single-record traits • Joint analysis of 2 traits (eg ADG and FI) • Genetic parameter estimates; • h2 of trait 1(ADG) (accounted for trait 2(FI)) • h2 of trait 2(FI) (accounted for trait 1(ADG)) • PLUS • rg12, re12, rp12

  8. Bivariate analysis of ADG and FI “ADG.as” (COMMAND FILE) Analysis of production traits Anim !P Sire !P Dam !P Br 2 !A Sex 2 !A HYS 2 !A ADG FI test.ped !ALPHA demo.dat !MVINCLUDE !DOPART $1 !PART 2 ADG FI ~ Trait Tr.Br Tr.Sex !r Tr.Anim !f Tr.HYS 1 2 1 0 Tr 0 US 1 0.1 1 !GP Tr.Anim 2 Tr 0 US 1 0.1 1 !GP Anim asreml –rs4 ADG 2

  9. Results: bivariate analysis “ADG2.asr” Source Model terms Gamma Component Comp/SE % C 1 Residual UnStruct 1 1022.23 1022.23 23.71 0 P 2 Residual UnStruct 1 2.25786 2.25786 14.78 0 P 3 Residual UnStruct 2 0.259174E-01 0.259174E-01 29.36 0 P 4 Tr.Anim UnStruct 1 1128.76 1128.76 16.25 0 P 5 Tr.Anim UnStruct 1 2.28471 2.28471 9.78 0 P 6 Tr.Anim UnStruct 2 0.165168E-01 0.165168E-01 13.14 0 P Covariance/Variance/Correlation Matrix UnStructured 1022. 0.4387 2.258 0.2592E-01 Covariance/Variance/Correlation Matrix UnStructured 1129. 0.5291 2.285 0.1652E-01 “ADG2.pvc” 7 VpADG 1 2151. 44.38 8 VpFI 3 0.4243E-01 0.8272E-03 9 Covp12 2 4.543 0.1506 h2_ADG = Tr.Anim 4/VpADG 1 7= 0.5248 0.0245 h2_FI = Tr.Anim 6/VpFI 3 8= 0.3892 0.0248 rg = Tr.Anim /SQR[Tr.Anim *Tr.Anim ]= 0.5291 0.0361 rp = Covp12 /SQR[VpADG 1*VpFI 3 ]= 0.4755 0.0109 “ADG2.pin” F VpADG 1+4 F VpFI 3+6 F Covp12 2+5 H h2_ADG 4 7 H h2_FI 6 8 R rg 4 5 6 R rp 7 9 8

  10. Univariate analysis of multi-record trait • When rg between 2 measurements is 1 or close to unity, “repeated measurements of the same trait”, within-individual variance is caused by temporary differences of environment • Otherwise, we should treat them as “2 different traits” they are not under the same genetic control • Genetic parameter estimates; • ha2, hm2 , c2, ram if data structure allows • PLUS repeatability (r)

  11. data set-up for multi-record trait (NBA) For repeatability model Treat NBA1-4 as different traits AnSDFixedParNBA A 1 2 . 1 10 A 1 2 . 2 11 A 1 2 . 3 10 A 1 2 . 4 13 B 3 4 . 1 9 B 3 4 . 2 12 C 3 5 . 1 10 C 3 5 . 2 11 C 3 5 . 3 13 . . . AnSDFixedNBA1NBA2NBA3NBA4 A 1 2 . 10 11 10 13 B 3 4 . 9 12 . . C 3 5 . 10 11 13 . . . .

  12. Example: repeatability model (NBA) “NBA.as” Analysis of NBA (repeatibility model) Anim !P Sire !P Dam !P Br 2 !A Sex 2 !A HYS 2 !A NBA repro.ped !ALPHA NBA.dat !REPEAT !MAXIT 50 !MVINCLUDE NBA ~ mu Br !r Anim ide(Anim)!f HYS “NBA.dat” CA1G0037 CA1F33910 CA1F0040 LW F TK951 11 CA1G0037 CA1F33910 CA1F0040 LW F TK952 12 CA1G0037 CA1F33910 CA1F0040 LW F TK953 5 CA1G0038 CA1F33910 CA1F0040 LW F TK943 9 CA1G0038 CA1F33910 CA1F0040 LW F TK953 5 CA1G0038 CA1F33910 CA1F0040 LW F TK961 6 CA1G0038 CA1F33910 CA1F0040 LW F TK963 3 CA1G0038 CA1F33910 CA1F0040 LW F TK972 2 CA1G0038 CA1F33910 CA1F0040 LW F TK973 12 CA1G0050 CA1E0226 CA1E0040 LW F TK952 10 . . .

  13. Results: repeatability model “NBA.asr” Source Model terms Gamma Component Comp/SE % C Anim 5421 5421 0.112836 0.644805 6.04 0 P ide(Anim) 5421 5421 0.652040E-01 0.372611 3.69 0 P Variance 10948 10690 1.00000 5.71454 62.25 0 P “NBA.pin” F Vp 1+2+3 F repeat 1+2 H h2 1 4 H r 5 4 “NBA.pvc” h2 = Anim 1/Vp 1 4= 0.0958 0.0155 r = repeat 5/Vp 1 4= 0.1511 0.0108

  14. Bivariate analysis of single & multi-record traits • Data Set-up • Command file( .as file) & Model • Which terms to estimate what • Problems / Solutions • Demonstration

  15. Data Set-up: single-multi records Anim Br Sex HYS NBA_ADG NBA_FI Tr . . . YL2O3774 LR F YL022 9 9 1 YL2O3774 LR F YL031 12 12 1 YL2O3774 LR F YL032 11 11 1 YL2O3779 LR F YL022 10 10 1 YL2O3779 LR F YL031 8 8 1 YL2O3798 LR F YL023 11 11 1 YL2O3798 LR F YL031 10 10 1 YL2O3800 LR F YL023 7 7 1 TT2H0453 LR M TK942 497.75 1.63 2 TT2H0456 LR F TK942 515.17 1.88 2 TT2H0483 LR F TK942 490.48 1.85 2 TT2H0484 LR F TK942 417.43 1.77 2 TK1H0246 LW M TK942 561.45 1.76 2 TK1H0239 LW M TK942 538.46 1.71 2 TK1H0228 LW M TK942 476.68 1.56 2 TT2H0495 LR F TK942 456.94 1.82 2 TT1H7156 LW M TK942 528.25 1.93 2 TT1H7157 LW F TK942 494.59 1.69 2 . . . Multi-records of NBA Single-record of ADG & FI

  16. Ve2 - Ve1 - Cov e12 Cov e12 G structure Command file: single-multi records Analysis of NBA and ADG traits Anim !P Br 2 !A Sex 2 !A HYS 2 !A NBA_ADG NBA_FI Tr 2 demo.ped !ALPHA demo1.dat !REPEAT !MAXIT 50 !MVINCLUDE NBA_ADG ~ Tr Tr.Br at(Tr,2).Sex !r Tr.Anim ide(Anim) !GU, at(Tr,1).ide(Anim) uni(Tr,2) !GU !f Tr.HYS 0 0 1 Tr.Anim 2 Tr 0 US 1 0.1 1 !GP Anim Ve1 = residual V. left from the model

  17. Concept: single-multi records

  18. Results: single-multi records (NBA-ADG) Source Model terms Gamma Component Comp/SE % C 1 ide(Anim) 11414 11414 0.764115 4.36474 2.25 0 U 2 at(Tr,1).ide(Anim) 11414 11414 -0.701052 -4.00452 -2.06 0 U 3 uni(Tr,2) 18613 18613 176.829 1010.08 23.44 0 U 4 Variance 18613 18220 1.00000 5.71215 62.25 0 P 5 Tr.Anim UnStruct 1 0.116258 0.664080 6.21 0 P 6 Tr.Anim UnStruct 1 -0.856536 -4.89266 -2.27 0 P 7 Tr.Anim UnStruct 2 198.460 1133.63 16.29 0 P “demo.pin” F (8)Ve2 1+3+4 F (9)Vp1 5+1+2+4 F (10)Vp2 7+8 F (11)Covp12 1+6 F (12)repeat1 1+2+5 H h12 5 9 H r1 12 9 H h22 7 10 R rg 5 6 7 R rp 9 11 10 “demo.pvc” h12 = Tr.Anim 5/(9)Vp1 9= 0.0986 0.0154 r1 = (12)repe 12/(9)Vp1 9= 0.1521 0.0108 h22 = Tr.Anim 7/(10)Vp2 10= 0.5263 0.0245 rg = Tr.Anim /SQR[Tr.Anim*Tr.Anim]= -0.1783 0.0777 rp = (11)Covp/SQR[(9)Vp1 *(10)Vp2]= -0.0044 0.0173

  19. Comparison: univariate – (semi)bivariate “univariate analysis of NBA” Source Model terms Gamma Component Comp/SE % C Anim 5421 5421 0.112836 0.644805 6.04 0 P ide(Anim) 5421 5421 0.652040E-01 0.372611 3.69 0 P Variance 10948 10690 1.00000 5.71454 62.25 0 P “(semi)bivariate analysis of NBA-ADG” Source Model terms Gamma Component Comp/SE % C ide(Anim) 11414 11414 0.764115 4.36474 2.25 0 U at(Tr,1).ide(Anim) 11414 11414 -0.701052 -4.00452 -2.06 0 U uni(Tr,2) 18613 18613 176.829 1010.08 23.44 0 U Variance 18613 18220 1.00000 5.71215 62.25 0 P Tr.Anim UnStruct 1 0.116258 0.664080 6.21 0 P Tr.Anim UnStruct 1 -0.856536 -4.89266 -2.27 0 P Tr.Anim UnStruct 2 198.460 1133.63 16.29 0 P “(semi)bivariate analysis of NBA-ADG” Source Model terms Gamma Component Comp/SE % C ide(Anim) 11414 11414 0.764115 4.36474 2.25 0 U at(Tr,1).ide(Anim) 11414 11414 -0.701052 -4.00452 -2.06 0 U uni(Tr,2) 18613 18613 176.829 1010.08 23.44 0 U Variance 18613 18220 1.00000 5.71215 62.25 0 P Tr.Anim UnStruct 1 0.116258 0.664080 6.21 0 P Tr.Anim UnStruct 1 -0.856536 -4.89266 -2.27 0 P Tr.Anim UnStruct 2 198.460 1133.63 16.29 0 P “univariate analysis of ADG” Source Model terms Gamma Component Comp/SE % C Anim 9621 9621 1.10486 1129.25 16.25 0 P Variance 7665 7530 1.00000 1022.08 23.70 0 P

  20. Estimates: univariate – (semi)bivariate “NBA.pvc” h2 = Anim 1/Vp 1 4= 0.0958 0.0155 r = repeat 5/Vp 1 4= 0.1511 0.0108 “demo.pvc” h12 = Tr.Anim 5/(9)Vp1 9= 0.0986 0.0154 r1 = (12)repe 12/(9)Vp1 9= 0.1521 0.0108 h22 = Tr.Anim 7/(10)Vp2 10= 0.5263 0.0245 rg = Tr.Anim /SQR[Tr.Anim*Tr.Anim]= -0.1783 0.0777 rp = (11)Covp/SQR[(9)Vp1 *(10)Vp2]= -0.0044 0.0173 “demo.pvc” h12 = Tr.Anim 5/(9)Vp1 9= 0.0986 0.0154 r1 = (12)repe 12/(9)Vp1 9= 0.1521 0.0108 h22 = Tr.Anim 7/(10)Vp2 10= 0.5263 0.0245 rg = Tr.Anim /SQR[Tr.Anim*Tr.Anim]= -0.1783 0.0777 rp = (11)Covp/SQR[(9)Vp1 *(10)Vp2]= -0.0044 0.0173 “ADG1.pvc” h2 = Anim 1/Vp 1 3= 0.5249 0.0245

  21. Problems / solutions • Convergence failed • Rescaling variable(s) to have similar Vp for both traits • eg FI = 1.1 kg/d => 11 (/10)kg/d to match NBA of 10 pigs/litter • Re-run 99% solved • Rescaling may change missing values to zero • eg “.” x10 = 0 • Be careful, keep missing value as it is • Bizarre Outputs from similar analyses • Check the order of terms in .asr carefully • Even with the same set-up of files, ASREML may report terms in different orders than some previous runs • Re-order components in .pin file to match .asr file

  22. Example: problem of order Source Component at(Tr,2).Litter 276.084 ide(Anim) 3.34576 at(Tr,1).ide(Anim) -3.11344 uni(Tr,2) 417.221 Variance 6.16018 Tr.Anim 0.785246 Tr.Anim -4.33941 Tr.Anim 174.395 Source Component at(Tr,2).Litter 35.6195 uni(Tr,2) 55.0355 ide(Anim) 0.912272 at(Tr,1).ide(Anim) -0.669691 Variance 6.16330 Tr.Anim 0.772876 Tr.Anim -1.41296 Tr.Anim 28.7313 F E11 5 F E22 2+4+5 F E12 2 F P11 2+3+5+6 F P22 8+1+10 F P12 2+7 F S11 2+3+6 H c2 1 13 H r11 15 12 H h21 6 12 H h22 8 13 R rg 6 7 8 R rp 12 14 13 R re 9 11 10 F E11 5 F E22 2+3+5 F E12 3 F P11 3+4+5+6 F P22 8+1+10 F P12 3+7 F S11 3+4+6 H c2 1 13 H r11 15 12 H h21 6 12 H h22 8 13 R rg 6 7 8 R rp 12 14 13 R re 9 11 10

  23. Demonstration

More Related