120 likes | 424 Views
DIFFERENTIATION AND MATURATION OF T CELLS IN THE THYMUS. BONE MARROW. HSC. HEMATOPOIETIC STEM CELL. THYMUS. LYMPHOID PRECURSOR. MYELOID PRECURSOR. BLOOD. BLOOD. B-cell. NK-cell. T-cell. monocyte. mast. neutrophil. DC. TISSUES. LYMPHOID TISSUES. B-cell. T-cell. mackrophage.
E N D
BONE MARROW HSC HEMATOPOIETIC STEM CELL THYMUS LYMPHOID PRECURSOR MYELOID PRECURSOR BLOOD BLOOD B-cell NK-cell T-cell monocyte mast neutrophil DC TISSUES LYMPHOID TISSUES B-cell T-cell mackrophage mast neutrophil DC
T- CELL DEVELOPMENT Lymphoid precursor NK cell c-kit/CD44 B B B B RAG-1/RAG-2 Pro-T Pro-B -rearrangement -rearrangement Pre-T L rearrangement Surrogate L H rearrangement Pre-T Pre-B T Selection clonal deletion Selection clonal deletion T T T Mature-T Mature-B
a a REGULATED T-CELL DIFFERENTIATION APC CD4+CD8+ TCR preT- Epithelial cell immatureTcell pre Tcell ANTIGEN RECOGNIZING RECEPTOR pro T cell SIGNALING RECEPTOR NO ANTIGEN RECOGNIZING RECEPTOR
EVENTS OF T CELL DIFFERENTIATION IN THE THYMUS Pro-T IL-7-dependent proliferation Early pre-T Pre-Tα-chain Lck signal β rearrangement unsuccesful β-chain γδ T-cell No selection Late pre-T CD4+CD8+ α rearrangement CD4+CD8+ αβ NKT-cell unsuccesful α-chain no positive selection negative selection αβCD4+ αβCD8+ • Generation of NK cells • – no TCR • 2. Differentiation of γδ and αβ TCR carrying T cells • 3. Selection of αβ TCR • – positive selection • – negative selection • 4. Differentiation of CD4+ and CD8+ T cell lineages
SELECTION OF T LYMPHOCYTES IN THE THYMUS AICD – Activation Induced Apoptosis PERIPHERAL TOLERANCE UNDER THE CAPSULE • The primary T cell pool is biased to MHC-specificity (V genes) 1-2% for one allotype • Focusing the T cell pool to self MHC recognition (+) • Elimination of useless clones • Elimination of self agressive clones (-) • CENTRAL TOLERANCE • Focusing The T cell repertoire for recognition of non self • Individualized T cell repertoire is available in the periphery • CD4 and CD8 co-stimulatory molecules are involved in positive selection IL-7-dependent proliferation CORTEX CD4-CD8- DN β+preTα TCRαβ CD4+CD8+ DP TCR(-) sMHC+sP sMHC+fP fMHC+fP selection CORTEX/ MEDULLA NO – selection MEDULLA – AICD αβTCR αβTCR CD4+CD8+
POSITIVE SELECTION OF DOUBLE POSITIVE (DP) T CELLS ALSO DIRECTS CD4 AND CD8 SINGLE POSITIVE (SP) T CELL COMMITMENT CD4+CD8+ CD4+CD8+ Thymic epithelial cell MHC-I + peptide complexes recruit CD8 MHC-II + peptide complexes recruit CD4 POSITIVE SELECTION FOR 3 – 4 DAYS, SUCCESSIVE α-GENE REARRANGEMENTS BARE LYMPHOCYTE SYNDROME (BLS) Lack of MHC class I – no CD8+ cells Lack of MHC class II – no CD4+ cells
SELECTION OF THE T CELL REPERTOIRE – CENTRAL TOLERANCE POSITIVE SELECTION – Thymic education (no instruction for specificity) Low avidity interaction of MHC - self peptide - TCR Thymic epithelial cells Self peptide composition and concentration (foreign peptides are not present) Low peptide dose induces positive selection – special ligands 80-90% of DN (CD4-CD8-) T cells is NOT positively selected PASSIVE CELL DEATH BY NEGLECTION NEGATIVE SELECTION – Central self tolerance High avidity of MHC - self peptide - TCR interaction Ubiquitous and abundant self antigens are present in the thymus High peptide dose induces negative selection Any thymic antigen presenting cell: epithelial cells, bone marrow-derived macrophages, dendritic cells THE GENERATION OF SELF MHC + FOREIGN PEPTIDE SPECIFIC T CELLS REQUIRES WEAK INTERACTION WITH SELF MHC + SELF PEPTIDE SELF RESTRICTED AND TOLERANT PERIPHERAL T CELL REPERTOIRE PHYSIOLOGICAL TRESHOLD
HOMEOSTASIS OF POSITIVE AND NEGATIVE SELECTION IN THE DEVELOPMENT OF THE AVAILABLE T LYMPHOCYTE REPERTOIRE Ratio of positive selection Homozygote Heterozygote Ratio of negative selection increases with the number of MHC genes Number of MHC molecules
a a APC APC APC APC APC APC CD8TCR CD8TCR CD8TCR CD4 TCR CD4 TCR CD4 TCR Ag Ag Ag T-CELL DIFFERENTIATION IN THE PERIPHERY Memory T-cell Activated T-cell Mature naiveT-cell
EFFECTOR T LYMPHOCYTES Effector T cells interact with and act on antigen presenting cells Effector T cells secrete cytokines and cytotoxins