1 / 8

CSI8751 인공지능특강 Hybrid Intelligent Systems: Methodologies and Applications

CSI8751 인공지능특강 Hybrid Intelligent Systems: Methodologies and Applications. 2007 년도 제 1 학기. 강의진 소개. 담당 교수 조성배 ( 공대 C515;  2123-2720; sbcho@cs.yonsei.ac.kr) 웹 페이지 : http://sclab.yonsei.ac.kr/courses/07TAI 강의 시간 화 6, 목 5, 6 ( 공 A542) 면담 시간 화 7, 8 담당 조교 김경중 ( 황금성 ). 강좌 목표.

salaam
Download Presentation

CSI8751 인공지능특강 Hybrid Intelligent Systems: Methodologies and Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CSI8751 인공지능특강Hybrid Intelligent Systems:Methodologies and Applications 2007년도 제 1학기

  2. 강의진 소개 • 담당 교수 • 조성배(공대 C515;  2123-2720; sbcho@cs.yonsei.ac.kr) • 웹 페이지 : http://sclab.yonsei.ac.kr/courses/07TAI • 강의 시간 • 화 6, 목 5, 6 (공A542) • 면담 시간 • 화 7, 8 • 담당 조교 • 김경중 (황금성)

  3. 강좌 목표 • 본 강좌에서는 현실 세계의 다양한 문제를 해결하기 위한 지능기술의 통합모델에 대해서 이해하고, 대표적인 응용문제에의 적용사례를 통해 문제해결 능력을 함양한다. • 이를 바탕으로 한학기 동안 실제적인 문제의 해결을 실습하여 텀프로젝트와함으로써 연구결과를 만드는 경험을 쌓는다.

  4. Human EC Soft Computing NN FL EC PC Game Bioinformatics MNN Social Agent Evolvable HW Robot PCR HWR CBR, FD, AD 수업 교재 Hybrid Intelligent Systems & Applications HMM FCN BN Speciation SASOM BM, MR SVM Conversational Agent TC, Web Mining IDS

  5. 수업 교재 • Textbook • Paper Collections in Hybrid Intelligent Systems

  6. Course Schedule • 3/6 : Overview • 3/8, 3/13 : Neural Networks • 3/15, 3/20 : Fuzzy Systems • 3/22, 3/27 : Evolutionary Computation • 3/29, 4/3 : Fuzzy Neural Networks • 4/5, 4/10 : Evolutionary Neural Networks • 4/12, 4/17 : Evolutionary Fuzzy Neural Networks, 중간시험 • 4/19, 4/24 : 중간시험 기간 • 4/26, 5/1 : Bayesian Networks • 5/3, 5/8 : Probabilistic Modeling, Interactive EC • 5/10, 5/15 : Application to Robotics • 5/17, 5/22 : Application to Image Processing • 5/29 : Application to Bioinformatics • 5/31, 6/5 : Application to Mobile Devices • 6/7 : 프로젝트 결과발표 • 6/12 : 기말시험 기간

  7. Evaluation Criteria • Evaluation Criteria • Term Project (written report & oral presentation) : 60% • Mid and Final Exams : 30% • Homework : 10% • Term Project (Oral presentation is required) : • Theoretical Issue (analysis, experiment, simulation) : Originality • Interesting Programming (Game, Demo, etc) : Performance • Survey : Completeness

  8. List of Possible Projects • Tangible Agent • Integrated Model • Life Browser • Bayesian Network for Middleware • Cluster GA • SASOM for Motion Recognition • Evolvability • Evolutionary Neural Networks

More Related