1 / 40

BCS - BEC Crossover: Pseudogap, Vortices & Critical Current

BCS - BEC Crossover: Pseudogap, Vortices & Critical Current. Mohit Randeria The Ohio State University Columbus, OH 43210, USA. Nordita, June 2006. Outline: review of BCS-BEC crossover theory pseudogap vortex structure fermionic bound states in vortex core

samara
Download Presentation

BCS - BEC Crossover: Pseudogap, Vortices & Critical Current

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BCS - BEC Crossover: Pseudogap, Vortices &Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006

  2. Outline: • review of BCS-BEC crossover theory • pseudogap • vortex structure • fermionic bound states in vortex core • critical current  unitary gas is the most robust superfluid

  3. Two routes to Strongly Interacting Fermions • in Cold Atom Systems: • Feshbach resonance enhance interactions • attraction > Ef • 3D BCS-BEC crossover • Optical lattice suppress “kinetic energy” • repulsion >> bandwidth • 2D Hubbard model • high Tc “superconductivity” • Feshbach Resonance + Optical lattice goal

  4. 6 Fermi Atoms: Li K 40 “up” & “down” species: two different hyperfine states e.g. Li Pairing of “spin up” and “down” fermions interacting via a tunable 2-body interaction: Feshbach Resonance 6 Typical Numbers: Trap freq. ~ 20 - 100 Hz N ~ 10 Ef ~ 100 nK -1 mK T ~ 0.05 - 0.1 Ef 1/kF ~ 0.3 mm TF radius ~ 100 mm Experiments: Jin (JILA) Ketterle (MIT) Grimm (Innsbruck) Hulet (Rice) Thomas (Duke) Salamon (ENS) 6

  5. Feshbach Resonance: external B field  tune bound state in closed channel & modify the effective interaction in open channel Closed channel Open channel adapted from Ketterle group (MIT) “Wide” resonance: Linewidth a single-channel effective model is sufficient

  6. Two-body problem: Low-energy effective interaction: s-wave scattering length 2-body bound state in vacuum size asB field increases decreases

  7. Many-body Problem: Dilute gas: range << interparticle distance  Low-energy effective interaction: BCS limit Unitarity BEC limit Strongly Interacting regime Dimensionless Coupling constant

  8. BCS-BEC Crossover • BEC • tightly bound • molecules • pair size • BCS • cooperative • Cooper pairing • pair size  B • D. M. Eagles, PR 186, 456 (1969) T=0 variational BCS gap eqn. • A.J. Leggett, Karpacz Lectures (1980) plusm renormalization • Ph. Nozieres & S. Schmitt-Rink, JLTP 59, 195 (1985) diagrammatic • theory of Tc • M. Randeria, in “Bose Einstein Condensation” (1995) T*,Tc, T=0; • with C. sa deMelo, J. Engelbrecht; and N. Trivedipseudogap; • 2-dimensions

  9. BCS to BEC crossover at T=0 • “gap”D • chemical potentialm • momentumdistribution n(k) • collective modes Crossover: Engelbrecht, MR & Sa de Melo, PRB 55, 15153 (1997)

  10. Functional Integral Approach: Saha ionization T*: Pairing temperature saddle-point Tc: Phase Coherence saddle-point + Gaussian fluctuations BEC BCS Sa de Melo, MR & Engelbrecht, PRL 71, 3202 (1993)

  11. How reliable is “saddle-point + Gaussian fluctuations”? Effect of (static) 4th order terms  Ginzburg criterion Sa de Melo, MR & Engelbrecht, PRL 71, 3202 (1993) PRB 55, 15153 (1997)

  12. Comparison between Theory & Experiment: “Condensate fraction” measured on molecular (BEC) side after rapid sweep from initial state  `Projection’ Experimental data: K: C. A. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004) Li: M. Zwierlein, et al., PRL 92, 120403 (2004) 40 6 analysis of projection: R. Diener and T. L. Ho, cond-mat/ 0401517 Theoretical Tc: C. Sa deMelo, MR, J. Engelbrecht, PRL 71, 3202 (1993)

  13. “Universality” for Only scales in the problem: Energy& Length Bertsch - Baker (2001); K. O’Hara et al., Science (2002); T. L. Ho, PRL (2004). Mean field theory* + fluctuations At unitarity: Monte Carlo** BEC limit: exact 4-body result! *C. Sa deMelo, MR, J. Engelbrecht, PRL (1993) & PRB (1997) Petrov, Shlyapnikov & Salamon, PRL (2003) ** T= 0 QMC: J. Carlson et al. PRL (2003); G. Astrakharchik et al. PRL(2004) T>0 QMC: A. Bulgac et al., (2005); E. Burovski et al., (2006); V. Akkineni, D.M. Ceperley & N. Trivedi (2006).

  14. Outline: • brief review of BCS-BEC crossover • pseudogap • vortex structure • fermionic bound states in vortex core • critical current

  15. Landau’s Fermi-Liquid Theory: • Strongly Interacting  Weakly-interacting • Normal Fermi systems Quasiparticle gas • e.g., He3; electrons in metals; heavy fermions • BCS theory: pairing instability in a normal Fermi-liquid • Qualitatively new physics in Strongly Interacting Fermions: • * Breakdown of Landau’s Fermi-liquid Theory • e.g., • Normal states of High Tc cuprate superconductors • pseudogap in BCS-BEC crossover • * Superconductivity/fluidity is not • a pairing instability in a normal Fermi liquid.

  16. Breakdown of Fermi-liquid theory: Crossover from to Normal Fermi Gas Normal Bose Gas Pseudogap:Tc < T < T* Pairing Correlations in a degenerate Fermi system M. Randeria et al., PRL (1992) N. Trivedi & MR, PRL (1995) • pairing gap in above Tc • strong T-dep. suppression of • spin susceptibility above Tc • no anomalous features in Pseudo -gap

  17. Strongly correlated non-Fermi-liquid superconductors normal states High Tc Cuprates Cold Fermi Gases T* T normal Bose gas Pseudo -gap Fermi Liquid Tc d-wave s-wave Superfluid 0 0.2 0 Carrier (hole) concentration BCS BEC • low-energy pseudogap • high-energy pseudogap • strange metal: w/T scaling • Spin-Charge separartion? M. Randeria in “Bose Einstein Condensation” (1995) & Varenna Lectures (1997).

  18. High Tc SC in cuprates • Highest known Tc (in K) • * electrons • Repulsive interactions • d-wave pairing • near Mott transition • competing orders: AFM,CDW • repulsion U >> bandwidth • x ~ 10 A • Tc ~ rs << D • Mean-field theory fails • anomalous normalstates • - strange metal & pseudogap • Breakdown of Fermi-liquid theory • Spin-charge separation? • BCS-BEC crossover • Highest known Tc/Ef ~ 0.2 • * cold Fermi atoms • Attractive interactions • s-wave pairing • only pairing instability • attraction > Ef • x ~ 1/kf • Tc ~ rs << D • Mean-field theory fails • pairing pseudogap

  19. Outline: • brief review of BCS-BEC crossover • pseudogap • vortex structure • fermionic bound states in vortex core • critical current R. Sensarma, MR & T. L. Ho, PRL 96, 090403 (2006) See also: N. Nygaard et al., PRL (2003); Bulgac & Y. Yu, PRL(2003). M. Machida & T. Koyama, PRL (2005); K. Levin et al, cond-mat (2005)

  20. Vortices in Rotating Fermi Gases Quantized vortices  unambiguous signature of superfluidity 6 Li Fermi gas through a Feshbach Resonance M.W. Zwierlein et al., Nature, 435, 1047, (2005)

  21. Bogoliubov-DeGennes Theory: mean field theory with a spatially-varying order parameter (can also include external trapping potential; not included here) T=0 Self-consistency: vortex

  22. Order Parameter Profile at T=0: At Unitarity: the two scales merge • BCS limit (cf. GL theory) • Two length scales! • initial rise: • (analytical result) • approach to • on scale:

  23. Density Profiles: BCS limit: Core density ~ n Unitarity: Core density depleted BEC limit: “Empty” core order parameter ~ density

  24. Outline: • brief review of BCS-BEC crossover • pseudogap • vortex structure • fermionic bound states in vortex core • critical current R. Sensarma, MR & T. L. Ho, PRL 96, 090403 (2006)

  25. Fermionic Bound States in the Vortex Core: Theoretical prediction (BCS limit): C. Caroli, P. deGennes, J. Matricon, Phys. Lett. 9, 307 (1964) STM Expts. NbSe2: H. Hess et al., PRL (1989). STM: Davis group (Cornell) D0 D(r) “Andreev” bound states in the core: “minigap” & spacing r Very low-energy excitations in vortex core

  26. Spectrum of Fermionic Excitations at unitarity continuum Bound states: Core states “edge” states Minigap follows C-dG-M predictions Through unitarity!

  27. Recall: Energy Gapv/s.Din BCS-BEC crossover: Leggett (1980) MR, Duan, Shieh (1990)

  28. Fermionic Excitations in BEC regime Fermion bound state in Vortex core persists into molecular BEC regime! continuum E Bound state! probe bound states via RF spectroscopy

  29. Bound state wavefunctions

  30. Outline: • brief review of BCS-BEC crossover • pseudogap • vortex structure • fermionic bound states in vortex core • critical current  unitary gas is the most robust superfluid R. Sensarma, MR & T. L. Ho, PRL 96, 090403 (2006) and unpublished

  31. Qs: Is there anything “special” about the unitary superfluid? • max • but similar for all • superfluid density • (Gallilean invaraince) for all • (analog of ) • hard to define – centrifugal effects • critical velocity Vc: non-linear response to flow

  32. Current Flow around a vortex: dependence?

  33. Vortex Core Size from Current flow from Engelbrecht, MR & Sa de Melo, PRB (1997)  BCS BEC 

  34. Current Flow around a vortex: Critical current:

  35. The unitary gas is the most robust Superfluid • max Tc ~ 0.2Ef(but similar for all 1/kfas > 0) • max critical velocity: BCS limit: Vc  Pair breaking BEC limit: Vc  Collective modes Landau Criterion:

  36. Conclusions: • single-channel model (interaction  as) • sufficient for wide resonances in Fermi gases • “mean-field theory + fluctuations” is qualitatively • correct for BCS-BEC crossover, • but no small parameter near unitarity • pairing pseudogap: breakdown of Fermi-liquid theory • Vortices evolve smoothly through crossover • Order Parameter, density & current profiles, Fermion bound states • Fermionic bound states exist even on BEC side • Critical velocity is nonmonotonic across resonance • Unitary gas is the most robust superfluid

  37. The end

  38. Pseudogap in 2D Attractive Hubbard Model Degenerate “normal” Fermi system Tc ~ 0.05t < T < t for |U| = 4t m(T,U) + Un/2 + 4 > T Randeria, Trivedi, Moreo & Scalettar, PRL 69, 2001 (1992) Trivedi & Randeria, PRL 75, 381 (1995)

  39. Pseudogap  Anomalous Spin Corelations • dc/dT > 0 • 1/(T1T) T-dep • 1/(T1T) ~ c(T) Randeria, Trivedi, Moreo & Scalettar, PRL 69, 2001 (1992)

  40. Pseudoagap: Compressibility looks ordinary Spin susceptibility reflects one-particle Energy gap • c ~ N(0) both strongly T-dep • dn/dm very weakly T-dep Trivedi & Randeria, PRL 75, 381 (1995)

More Related