500 likes | 853 Views
Kapitel 4 Kryptographie. Inhalt. 4.1 Was ist Kryptographie? 4.2 Monoalphabetische Verfahren: Cäsar, ... 4.3 Polyalphabetische Verfahren: Vignère, ... 4.4 Modernste Kryptographie: Das Problem des Schlüssels. 4.1 Kryptologie = Kryptographie.
E N D
Inhalt 4.1 Was ist Kryptographie? 4.2 Monoalphabetische Verfahren: Cäsar, ... 4.3 Polyalphabetische Verfahren: Vignère, ... 4.4 Modernste Kryptographie: Das Problem des Schlüssels
4.1 Kryptologie = Kryptographie • Geheimhaltung: Garantie, dass eine Nachrichtvon nicht autorisierten Personen nicht gelesen werden kann. • Authentifikation: Garantie, dass eine Nachrichtvon nicht autorisierten Personen nicht verändert werden kann.
Kryptologie bietet Sicherheit • Verschlüsselung diplomatischer Dienst, Militär, Mobilfunk, Pay-TV, ... • Authentifikation von Daten e-commerce, Homebanking, electronic cash, Computerviren, ... • Authentifikation von Personen Geldautomat, Rechnerzugang, Telefonkarten, Wegfahrsperre bei Kfzs, ...
Sicherheit ja ! Aber wozu Kryptologie? Kryptologie bietet Verfahren,die (im Prinzip) beweisbar sicher sind. Kryptologische Mechanismenkönnen (im Prinzip)beliebig sicher gemacht werden.
Der Angreifer Kann man verhindern, dass ein Angreifer die Nachricht versteht?
Drei Geheimtexte Dodasos isostot unonkoknonackokbobaror U R J Z J K L E B E R T A S R I T X N P U T G Q W M S L O D B P
Geschichte Antike: die spartanische Skytala, der Cäsar-Code Mittelalter: Leon Battista Alberti, Trithemius, Vigenère Das Zeitalter der Chiffriermaschinen: Wheatstone, Jefferson, Kasiski, Friedman, Scherbius, Hagelin, ... Die mathematische Ära: Shannon, Diffie, Hellman, Shamir
4.2 Die Cäsar-Verschlüsselung Man schreibt das normale Alphabet (Klartextalphabet= KT) auf und darunter nochmals das normale Alphabet (Geheimtextalphabet= GT), aber um einige Stellen verschoben. Beispiel:KT: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z GT: W X Y Z A B C D E F G H I J K L M N O P Q R S T U V Verschlüsselung: Ein Klartextbuchstabe wird durch den darunter- stehenden Geheimtextbuchstaben ersetzt. Beispiel: Aus MATHE wird IWPDA.
Cäsar-Scheiben Etwa um 1500 wurden “Verschlüsselungsmaschinen” erfunden, z.B. die Cäsar-Scheiben: Zwei runde Scheiben sind in ihrem Mittelpunkt drehbar gegeneinander befestigt. Auf jeder der Scheiben ist das Alphabet in normaler Reihenfolge zu sehen. Verschlüsselt wird, indem von außen nach innen gelesen wird. Entschlüsselt wird, indem man von innen nach außen liest.
wird verschlüsselt wird entschlüsselt Verschlüsselungsschema Sender und Empfänger brauchen einen geheimen Schlüssel. Klartext: Lieber Herr ... Geheimtext: XYRTRE WREE... Klartext: Lieber Herr ...
Der Angreifer will den Geheimtext ohne Schlüssel entschlüsseln!
Mechanismus “Verschlüsselung” Menge vonSchlüs seln Der Schlüssel K ist das gemeinsame Geheimnisvon Sender und Empfänger. K K Menge vonNachrichten m c m Geheimtext Klartext Klartext Entschlüsselungm = fK-1(c) Verschlüsselungc = fK(m)
Kryptoanalyse der Cäsar-Verschlüsselung • Ausprobieren aller Möglichkeiten Da nur 26 Schlüssel zu testen sind, ist dies möglich. • Statistische Analyse Im Deutschen ist E der mit Abstand häufigste Buchstabe (ca. 20%). Zähle die Buchstaben im Geheimtext. Der häufigste entspricht dem Klartext-E. Damit liegt der Schlüssel fest, und man kann entschlüsseln.
Cäsar knacken U R J Z J K L E B E R T A S R I V S K A K L M F C F S U B T S J W T L B L M N G D G T V C U T K X U M C M N O J E H U W D V U L Y V N D N O P I F I V X E W V M Z W O E O P Q J G J W Y F X W N A X P F P Q R K H K X Z G Y X O B Y Q G Q R S L I L Y A H Z Y P C Z R H R S T M J M Z B I A Z Q D A S I S T U N K N A C K B A R E B T J T U V O L O B D L C B S F C U K U V W P M P C E M D C T G D V L V W X Q N Q D F N E D U H E W M W X Y R O R E G N F E V I F X N X Y T S P S F H O G F W J G Y O Y Z A T Q T G I P ‘H G X K H Z P Z A B U R U H J Q I H Y L I A Q A B C V S V I K R J I Z M J B R B C D W T W J L S K J A N K C S C D E X U X K M T L K B O L D T D E F Y V Y L N U M L C P M E U E F G Z W Z M O V N M D Q N F V F G H A X A N P W O N E R O G W G H I B Y B O Q X P O F S P H X H I J C Z C P R Y Q P G T Q I Y I J K D A D Q S Z R Q H
Kardinal, Pastor und Admiral, als Führungstrio null und nichtig und darum völlig abhängig vom Ami-Trust, tat durch Radionachricht und Anschlag kund, dass Nahrungsnot und damit Tod aufs Volk zukommt. Zunächst tat man das als Falschinformation ab. Das ist Propagandagift, sagt man. Doch bald schon ward spürbar, was man ursprünglich nicht glaubt. Das Volk griff zum Stock, zum Dolch. “Gib uns das täglich Brot”, hallts durch Land und “pfui auf das Patronat, auf Ordnung, Macht und Staat.” ... (Georges Perec, Anton Voyls Fortgang. Zweitausendeins 1986.)
Monoalphabetische Verschlüsselungen Ein Verschlüsselungsalgorithmus heisst monoalphabetisch (griech: nur ein Alphabet), falls jederKlartextbuchstabe immer in den gleichen Geheimtextbuchstaben verschlüsselt wird. Unter das Klartextalphabet schreibt man ein beliebig durcheinander-gewürfeltes Geheimtextalphabet. Beispiel: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z F G W E V H D I C U A J T B S Q R K Z L M Y N O P X Verschlüsselung: Von oben nach unten, aus MATHE wird TFLIV.
Schlüsselwort-Chiffrierung Unter das Klartextalphabet schreibt man das Geheimtextalphabet; dieses wird wie folgt gebildet: Sender und Empfänger wählen ein Wort (Beispiel: MATHEMATIK). Dieses bildet den Anfang des Geheimtextalphabets (wobei doppelt auftretende Buchstaben beim zweiten Mal usw. entfallen). Dann werden die restlichen Buchstaben des Alphabets aufgefüllt: Beispiel:KT: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z GT: M A T H E I K B C D F G J L N O P Q R S U V W X Y Z
Wie sicher sind monoalphabetische Verschlüsselungen? Es gibt genau 26! Permutationen, also 26! Möglichkeiten für ein Geheimtextalphabet. Da 26! = 403 291 461 126 605 635 584 000 000ist, gibt es eine riesige Zahl von Schlüsseln. Trotzdem haben monoalphabetischen Verschlüsselungen Nachteile: 1. Der Schlüssel ist die Folge der 26 Buchstaben des Geheimtext-alphabets. Eine solche Folge ist schwer zu merken. 2. Sie sind relativ leicht zu knacken (trotz der großen Schlüsselzahl).‘Statistische Analyse: Der Angreifer entschlüsselt die häufigsten Buchstaben (E, N, ...) und rät die restlichen.
4.3 Polyalphabetische Verschlüsselungen • Man müsste ... so verschlüsseln können,... dass die Häufigkeiten der Buchstaben vertuscht werden. • Also müsste man ...so verschlüsseln,... dass sich das Geheimtextalphabet von Buchstabe zu Buchstabe ändert. • Aber da alles müsste so gehen, ...dass der Empfänger des Geheimtexts diesen wieder entschlüsseln kann.
Polyalphabetische Verschlüsselungen Idee derpolyalphabetischen Verschlüsselung: Verwende bei jedem Buchstaben ein neues Alphabet! D.h.: Verwende einen Cäsar-Code, aber wechsle nach jedem Buchstaben die Einstellung der Scheiben. Diese Idee entstand um 1500 und wurde u.a. von Alberti, Porta, Trithemius und Vigenère weiterentwickelt.
Algorithmus und Schlüssel Der Algorithmus ist die allgemeine Vorschrift, wie man ver- und entschlüsselt. Der Algorithmus ist i.a. öffentlich bekannt (auch dem Angreifer). Beispiel: Beim Cäsar-Code repräsentieren die Cäsar-Scheiben den Algorithmus.Der Schlüssel gibt die konkrete Verschlüsselungsvorschrift an. Der Schlüssel ist das exklusive Geheimnis von Sender und Empfänger. Beispiel: Beim Cäsar-Code ist der Schlüssel die Einstellung der Scheiben (oder der Buchstabe, in den A verschlüsselt wird, oder der Buchstabe, in den E verschlüsselt wird, oder ...).
Vigenère-Quadrat A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D E F G H I J K L M N O P Q R S T U V W X Y Z A B C E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G H I J K L M N O P Q R S T U V W X Y Z A B C D E F H I J K L M N O P Q R S T U V W X Y Z A B C D E F G I J K L M N O P Q R S T U V W X Y Z A B C D E F G H J K L M N O P Q R S T U V W X Y Z A B C D E F G H I K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L M N O P Q R S T U V W X Y Z A B C D E F G H I J K M N O P Q R S T U V W X Y Z A B C D E F G H I J K L N O P Q R S T U V W X Y Z A B C D E F G H I J K L M O P Q R S T U V W X Y Z A B C D E F G H I J K L M N P Q R S T U V W X Y Z A B C D E F G H I J K L M N O Q R S T U V W X Y Z A B C D E F G H I J K L M N O P R S T U V W X Y Z A B C D E F G H I J K L M N O P Q S T U V W X Y Z A B C D E F G H I J K L M N O P Q R T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U V W X Y Z A B C D E F G H I J K L M N O P Q R S T V W X Y Z A B C D E F G H I J K L M N O P Q R S T U W X Y Z A B C D E F G H I J K L M N O P Q R S T U V X Y Z A B C D E F G H I J K L M N O P Q R S T U V W Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
Vigenère-Verschlüsselung Schlüsselwort: M A T H E M A T H E M A T H E M Klartext: D A S I S T U N K N A C K B A R Geheimtext: P A L P W F U G R R M C D I E Y Anders ausgedrückt: Jeder Buchstabe wird in eine Zahl übersetzt: A = 0, B = 1, ..., Z = 25. Dann wird Klartext- und Schlüsselbuchstabe modulo 26 addiert. Das Ergebnis ist der Geheimtextbuchstabe.
Rotormaschinen • Idee: Durch Kopplung verschiedener „Rotoren“ entsteht ein guter Algorithmus • Komplexe Permutationen (Enigma) • Große Periode (M-209)
Die Enigma Die deutsche Wehrmacht benutzt im 2. Weltkriegdie Chiffriermaschine Enigma (griech.: Rätsel). Funktionsweise:Nach einem Tastendruck fließt Strom durch eine komplizierte Verdrahtung mehrerer gekoppelter Rotoren und ein Lämpchen zeigt den Geheim-textbuchstaben an. Die Rotoren drehen sich bei jedem Anschlag um eine Einheit weiter.
Besser = unknackbar? • Der Vigenère-Code wurde 350 Jahre lang nicht geknackt. • Kann man den Code noch sicherer machen? • Man muss das Schlüsselwort so lang wie möglich machen und die Buchstaben zufällig wählen.So erhält man einen unknackbare Code!
Erfolg des Vigenère-Verfahrens Im allgemeinen werden gleiche Klartextbuchstaben in verschiedene Geheimtextbuchstaben verschlüsselt. Daher sind die Häufigkeiten der Buchstaben des Geheimtexts sehr ausgeglichen. Also kann man mit einer herkömmlichen statistischen Analyse (die häufigsten Buchstaben suchen und zu E, N, ... entschlüsseln) einen Vigenère-Code nicht knacken. Dieses Verfahren blieb über 300 Jahre lang ungeknackt! Erst 1863 fand der preußische Infanteriemajor Friedrich Wilhelm Kasiski eine Möglichkeit der Kryptoanalyse. Sie besteht aus 2 Teilen.
Kryptoanalyse, 1.Teil: Bei bekannter Schlüsselwortlänge Angenommen, das Schlüsselwort hat 5 Buchstaben, dann wurden die Buchstaben Nr. 1, 6, 11, 16, ... alle mit dem ersten Schlüssel-wortbuchstaben verschlüsselt. Dann könnten wir diesen bestimmen: Wir suchen den häufigsten Buchstaben unter den Buchstaben Nr. 1, 6, 11, 16, ... Dieser muss dem Klartext-E entsprechen. Erster Schlüsselwortbuchstabe: Anfangsbuchstabe des Alphabets, bei dem E in diesen häufigsten Buchstaben verschlüsselt wird. Beispiel: Wenn der häufigste Buchstabe Q ist, dann sucht man in der Spalte, die oben mit E beginnt, den Buchstaben Q. Dann geht man in dieser Zeile nach vorne – und findet M. Durch Betrachten der Buchstaben Nr. 2, 7, 12, 17, ... findet man den zweiten Schlüsselwortbuchstaben. Usw.
Kryptoanalyse, 2.Teil: Schlüsselwortlänge bestimmen (I) Wenn die ersten Buchstaben (z.B. E) einer Folge, die an zwei Stellen im Klartext vorkommt (z.B. EIN), zufällig unter dem gleichen Schlüssel-wortbuchstaben (z.B. C) stehen, dann ergeben sich an diesen Stellen auch zwei gleiche Geheimtextfolgen (z.B. GPQ). Beispiel: SW: D A C H D A C H D A C H D A C H D A C H D A C HKT: : : E I N : : : : : : : : : : : : : E I N : : :GT: : : G P Q : : : : : : : : : : : : : G P Q : : : Dieses Phänomen tritt dann auf, wenn der Abstand der Folgen (hier: 16) ein Vielfaches der Schlüsselwortlänge (hier: 4) ist.
Bestimmung der Schlüsselwortlänge (II) Die Länge des Schlüsselworts kann man also wie folgt bestimmen: 1. Man sucht gleiche Folgen im Geheimtext.2. Man bestimmt den Abstand dieser Folgen.3. Der ggT (größte gemeinsame Teiler) dieser Abstände ist ein Kandidat für die Länge des Schlüsselworts. Beispiel: Findet man in einem Geheimtext mehrfach vorkommende Folgen mit den Abständen 30 (= 235), 84 (= 2237) und 18 (= 233), kommt man zur Vermutung, dass die Schlüsselwortlänge 6 ist. Fazit:Auch der Vigenère-Code istknackbar (wenn auch raffiniert)!
Vigenère knacken E Y R Y C F W L J H F H S I U B H M J O U C S E G T N E E R F L J L V S X M V Y S S T K C M I K Z S J H Z V B F X M X K P M M V W O Z S I A F C R V F T N E R H M C G Y S O V Y V F P N E V H J A O V W U U Y J U F O I S H X O V U S F M K R P T W L C I F M W V Z T Y O I S U U I I S E C I Z V Z V Y V F P C Q U C H Y R G O M U W K V B N X V B V H H W I F L M Y F F N E V H J A O V W U L Y E R A Y L E R V E E K S O C Q D C O U X S S L U Q V B F M A L F E Y H R T V Y V X S T I V X H E U W J G J Y A R S I L I E R J B V V F B L F V W U H M T V U A I J H P Y V K K V L H V B T C I U I S Z X V B J B V V P V Y V F G B V I I O V W L E W D B X M S S F E J G F H F V J P L W Z S F C R V U F M X V Z M N I R I G A E S S H Y P F S T N L R H U Y R
Ein unknackbarer Code Schlüsselwort: Q X V H C A M D M Z S J E C B Y Klartext: D A S I S T U N K N A C K B A R Geheimtext: T X N P U T G Q W M S L O D B P
Was heisst “unknackbar”? T X N P U T G Q W M S L O D B P A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B . . . . . . . . . . . . . . . . D A S I S T U N K N A C K B A R . . . . . . . . . . . . . . . . M A T H E M A T I K I S T G U T . . . . . . . . . . . . . . . . Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
One-time pad („Einmalblock“) • Algorithmus: Addition „modulo 2“ • Entschlüsseln = Verschlüsseln • Die Vernam-Chiffre ist absolut sicher (“perfekt”), falls die Schlüsselfolge wirklich zufällig ist (Shannon 1949) • Problem: Länge der Schlüsselfolge = Länge des Klartexts Zufallsfolge (one-time pad ) 01101 01000 11100 ... Geheimtext 00100 11001 00100 ... Klartext 01001 10001 11000 ...
Pseudozufallsfolgen • Praktischer Kompromiss: Pseudozufallsfolgen • Sender und Empfänger müssen nur einen Schlüssel (= Initialisierung des Generators) konstanter Länge austauschen. • Anwendung: Verschlüsselung beim Handy Pseudozufallsfolge Pseudo-zufallsbit-generator 01101 01000 11100 ... Geheimtext 00100 11001 00100 ... Klartext 01001 10001 11000 ...
4.4 Geht das mit rechten Dingen zu? • Zwei Personen, die sich noch nie getroffen haben, unterhalten sich öffentlich ... ... und am Ende des Gesprächs haben sie ein gemeinsames Geheimnis, während alle anderen keine Ahnung davon haben ??? • Das wäre die Lösung des Schlüsselproblems! Man müsste die Übertragung des Schlüssels nicht mehr organisatorisch (o.ä.) regeln, sondern könnte mathematische Methoden anwenden!
Die Kunst, öffentlich geheime Süppchen zu kochen öffentlich: gemeinsame Suppe
Diffie-Hellman Key-Exchange (1976)Verfahren zur „symmetrischen“ Erzeugung eines gemeinsamen Schlüssels öffentlich: p Primzahl (100 Stellen), g natürliche Zahl (100 Stellen) Wählt Zahl a < p. Wählt Zahl b < p. Berechneta = ga mod p. a b Berechnetb = gb mod p. Berechnetba mod p ( = g ba mod p). Berechnetab mod p ( = g ab mod p). g ba mod p = K = g ab mod p gemeinsamer Schlüssel
“Systematische” Angriffe • Systematisches Ausprobieren aller Schlüssel symmetrisch Schlüsselaust. Bewertung 40 Bit 256 Bit völlig unsicher 56 Bit 512 Bit heute knackbar 128 Bit 1024 Bit nicht knackbar 256 Bit 2048 Bit nie knackbar • Bezüglich dieser Angriffe ist die Sicherheit von Algorithmen unbeschränkt! Die einzige Gefahr droht von der Mathematik!