180 likes | 312 Views
A Primer in Bifurcation Theory for Computational Cell Biologists Lecture 7: Fold-Hopf Bifurcation. http://www.biology.vt.edu/faculty/tyson/lectures.php. John J. Tyson Virginia Polytechnic Institute & Virginia Bioinformatics Institute. Click on icon to start audio. degenerate Hopf. cusp.
E N D
A Primer in BifurcationTheoryfor Computational Cell BiologistsLecture 7: Fold-Hopf Bifurcation http://www.biology.vt.edu/faculty/tyson/lectures.php John J. Tyson Virginia Polytechnic Institute & Virginia Bioinformatics Institute Click on icon to start audio
degenerate Hopf cusp supHB q s s s CF sxs q xs u uxs s p u subHB u s p subHB Saddle- Node Loop SN s xs q sxs s Takens- Bogdanov q SL SL uxs SNIC SN p p Codimension-Two Bifurcations
HB p2 SL SN p1 Takens-Bogdanov Bifurcations x1 p2 saddle-loop p1
Hopf SN 4 p2 3 1 2 p1 Fold-Hopf Bifurcation x1 p2 p1
r x1 constant angular velocity in f x2 x1 x3 Minimum number of variables for fold-Hopf bifurcation is three:
x1 x1 f
(− + +) (− − −) r (+ − −) (+ + +) x1 x1 p1 HB HB SN SN HB CASE 1 SN HB SN
(− − −) (− + +) x1 (+ + +) (+ − −) p1 HB HB SN SN HB CASE 2 SN r x1 HB SN
HB Torus CASE 3 SN HB SN
Heteroclinic x1 x1
x1 p1 HB He To HB SN SN HB Torus CASE 3 SN Heteroclinic HB SN
CASE 4 From Kuznetsov’s Book
CASE 4 x1 HB HB To SN SN p1 ‘Cycle Blowup’
CASE 1 From Kuznetsov’s Book