690 likes | 874 Views
Measuring and Modeling Transpiration, or What the Flux is Hydrology? ChEAS Workshop. Scott Mackay UW-Madison. Outline. (A) Basic Hydrologic Concepts A.1 Water Resources and Global Terrestrial Ecosystems A.2 Hydrologic budgets and conservation
E N D
Measuring and Modeling Transpiration,or What the Flux is Hydrology?ChEAS Workshop Scott Mackay UW-Madison Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Outline (A) Basic Hydrologic Concepts A.1 Water Resources and Global Terrestrial Ecosystems A.2 Hydrologic budgets and conservation A.3 Evapotranspiration as a residual: the traditional hydrologic approach (B) Transpiration B.1 Direct measurements of transpiration B.2 Indirect measurements of transpiration B.3 Sapflux instrumentation and flux measurements in N. Wisconsin (C) Water Flux Modeling C.4 Groundwater / surface water interactions C.2 Incorporating spatial variation in water fluxes C.3 Incorporating physiology C.4 Results from N. Wisconsin (D) Future Directions? Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Future Directions? • Suggested question: • How does landscape fragmentation affect transpiration and carbon flux rates? • Your mission: • Develop a 1 (2 max) page micro proposal that addresses the above question or one of your choosing; • Your proposal should state questions or hypotheses, objectives, how you would conduct the work, and what the anticipated results would be. Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Outline (A) Basic Hydrologic Concepts A.1 Water Resources and Global Terrestrial Ecosystems A.2 Hydrologic budgets and conservation A.3 Evapotranspiration as a residual: the traditional hydrologic approach (B) Transpiration B.1 Direct measurements of transpiration B.2 Indirect measurements of transpiration B.3 Sapflux instrumentation and flux measurements in N. Wisconsin (C) Water Flux Modeling C.4 Groundwater / surface water interactions C.2 Incorporating spatial variation in water fluxes C.3 Incorporating physiology C.4 Results from N. Wisconsin (D) Future Directions? Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Water and Global Vegetation Precipitation (mm) 500 4500 Deserts Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Outline (A) Basic Hydrologic Concepts A.1 Water Resources and Global Terrestrial Ecosystems A.2 Hydrologic budgets and conservation A.3 Evapotranspiration as a residual: the traditional hydrologic approach (B) Transpiration B.1 Direct measurements of transpiration B.2 Indirect measurements of transpiration B.3 Sapflux instrumentation and flux measurements in N. Wisconsin (C) Water Flux Modeling C.4 Groundwater / surface water interactions C.2 Incorporating spatial variation in water fluxes C.3 Incorporating physiology C.4 Results from N. Wisconsin (D) Future Directions? Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Hydrologic Cycle a – evaporation, non-vegetation b – evapotranspiration c – lateral transport d – precipitation e – runoff f – ground water recharge Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Streamflow Discharge Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Groundwater Flow Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Sand and Gravel Aquifer Price County Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Outline (A) Basic Hydrologic Concepts A.1 Water Resources and Global Terrestrial Ecosystems A.2 Hydrologic budgets and conservation A.3 Evapotranspiration as a residual: the traditional hydrologic approach (B) Transpiration B.1 Direct measurements of transpiration B.2 Indirect measurements of transpiration B.3 Sapflux instrumentation and flux measurements in N. Wisconsin (C) Water Flux Modeling C.4 Groundwater / surface water interactions C.2 Incorporating spatial variation in water fluxes C.3 Incorporating physiology C.4 Results from N. Wisconsin (D) Future Directions? Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Watershed Boundary Stream Divide Stream junction Stream Orders First Evapotranspiration as a Residual P + GIN - (Q + E + GOUT) = 0 E = P - Q Assumes GIN = GOUT Nested Watershed Hillslope Second Third Watershed Outlet Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Hillslope Profile (or Catena) Hillslope Hydrology Precipitation Evapotranspiration Throughfall and stemflow Infiltration Drainage Runoff Groundwater flow Streamflow Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Outline (A) Basic Hydrologic Concepts A.1 Water Resources and Global Terrestrial Ecosystems A.2 Hydrologic budgets and conservation A.3 Evapotranspiration as a residual: the traditional hydrologic approach (B) Transpiration B.1 Direct measurements of transpiration B.2 Indirect measurements of transpiration B.3 Sapflux instrumentation and flux measurements in N. Wisconsin (C) Water Flux Modeling C.4 Groundwater / surface water interactions C.2 Incorporating spatial variation in water fluxes C.3 Incorporating physiology C.4 Results from N. Wisconsin (D) Future Directions? Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Direct Transpiration Measurements 1) leaf level gas exchange a) direct measurement b)interrupts ambient environment c)large number of samples needed to scale up Pearcy et al. (1989); Schulze et al. (1982) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Direct Transpiration Measurements 2) tree level xylem sap flow a) large number of measurements b)does not interrupt ambient environment c)requires appropriate scaling in time and space Cermak and Kucera (1973); Granier (1987); Schulze and Fichtner (1988) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Direct Transpiration Measurements 3) lysimeters a) most accurate method b)large disturbance to soil environment c)difficult to measure large trees d) difficult to field replicate van Bevel and Meyers (1962); Fritschen et al. (1973) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
4) micrometeorological techniques a) direct ecosystem level measurement b)requires appropriate site conditions c)can not separate ecosystem components directly Direct Transpiration Measurements Campbell and Unsworth (1979); Kaimal (1979); Wyngaard (1981) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Outline (A) Basic Hydrologic Concepts A.1 Water Resources and Global Terrestrial Ecosystems A.2 Hydrologic budgets and conservation A.3 Evapotranspiration as a residual: the traditional hydrologic approach (B) Transpiration B.1 Direct measurements of transpiration B.2 Indirect measurements of transpiration B.3 Sapflux instrumentation and flux measurements in N. Wisconsin (C) Water Flux Modeling C.4 Groundwater / surface water interactions C.2 Incorporating spatial variation in water fluxes C.3 Incorporating physiology C.4 Results from N. Wisconsin (D) Future Directions? Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Indirect Evapotranspiration Estimation • Temperature-Based • Cannot resolve time intervals less than monthly • Ignore processes • Energy Balance • Simple • Relies on differences between uncertain quantities • Unreliable for large vapor pressure gradients • Mass Transfer • Uses reliable micrometeorological measurements • Data collection difficult for multiple measurement sites • Combination Methods • Combines benefits of energy balance and mass transfer • Data intensive Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Thornthwaite (1949)Temperature-Based Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Indirect Evapotranspiration Estimation • Temperature-Based • Cannot resolve time intervals less than monthly • Ignore processes • Energy Balance • Simple • Relies on differences between uncertain quantities • Unreliable for large vapor pressure gradients • Mass Transfer • Uses reliable micrometeorological measurements • Data collection difficult for multiple measurement sites • Combination Methods • Combines benefits of energy balance and mass transfer • Data intensive Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Energy Balance Method Rn H LE G B = 0.1 (tropical oceans), 0.4 to 0.8 (temperate forests), 10.0 (deserts) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Indirect Evapotranspiration Estimation • Temperature-Based • Cannot resolve time intervals less than monthly • Ignore processes • Energy Balance • Simple • Relies on differences between uncertain quantities • Unreliable for large vapor pressure gradients • Mass Transfer • Uses reliable micrometeorological measurements • Data collection difficult for multiple measurement sites • Combination Methods • Combines benefits of energy balance and mass transfer • Data intensive Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Mass Transfer (Ideal Gas Law) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Mass Transfer: Vertical Transport Vapor LE H Pressure Temperature Gradient Gradient Z Wind Speed LE H LE H Eddy Currents LE H M Frictional Drag LE = latent heat of evaporation M = momentum H = sensible heat Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Mass Transfer: Vertical Transport Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Indirect Evapotranspiration Estimation • Temperature-Based • Cannot resolve time intervals less than monthly • Ignore processes • Energy Balance • Simple • Relies on differences between uncertain quantities • Unreliable for large vapor pressure gradients • Mass Transfer • Uses reliable micrometeorological measurements • Data collection difficult for multiple measurement sites • Combination Methods • Combines benefits of energy balance and mass transfer • Data intensive Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Combination Formula (Penman, 1948) Energy Vertical Transport Mass Transfer Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Penman-Monteith (Monteith,1965) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Priestley and Taylor (1972) • works best for low VPD; • crude for low canopy • conductance (<20mm/s) Deardorff (1978); Maufouf and Noilhan (1991) • sensitive to stability; • soil resistance not easy • to calculate; • numerous variants are • available Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Outline (A) Basic Hydrologic Concepts A.1 Water Resources and Global Terrestrial Ecosystems A.2 Hydrologic budgets and conservation A.3 Evapotranspiration as a residual: the traditional hydrologic approach (B) Transpiration B.1 Direct measurements of transpiration B.2 Indirect measurements of transpiration B.3 Sapflux instrumentation and flux measurements in N. Wisconsin (C) Water Flux Modeling C.4 Groundwater / surface water interactions C.2 Incorporating spatial variation in water fluxes C.3 Incorporating physiology C.4 Results from N. Wisconsin (D) Future Directions? Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Types of Tree Level Xylem Sap Flow Xylem flow velocity with heat pulses V=D/T Hard to determine true distances due to wall friction, anastomising flow paths and other problems Measurement of xylem sap mass flow (Cermak and Kucera-type sensors) 1) Null balance method maintains a constant pre-selected temperature (4 C) between temperature measurement points a) power requirements minimal because power is proportional to flow b) little empiricism c) can not determine within tree flow paths 2) Constant heating method (Granier-type sensors) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Granier-Type Sap Flux Measurements Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Granier-Type Sap Flux Measurements Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Granier-Type Sap Flux Measurements 1)Appropriate thermal protection (Ewers and Oren 2000) a) minimize thermal gradients b) do not overinsulate 2) Sapwood estimation (Waring, et al. 1982. Whitehead et al. 1984, Ewers et al. 1999, Oren et al. 1999, Schafer et al. 2000) a) use stem cores or cross sections b) computer tomography 3) Spatial scaling within trees (Phillips et al. 1996, Ewers and Oren 2000, Oren et al. 1999, Clearwater et al. 1999, Lu et al. 2000, Ewers et al. 2002, James et al. 2002) a) need to measure both circumferential and radial trends b) appropriate use of tree allometric relations 4) Environmental measurements 5) Time lags (Kostner et al. 1992, Martin et al. 1997, Phillips et al. 1997, Ewers and Oren 2000) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Granier-Type Sap Flux Measurements 1) Appropriate thermal protection (Ewers and Oren 2000) a) minimize thermal gradients b) do not overinsulate 2) Sapwood estimation (Waring, et al. 1982. Whitehead et al. 1984, Ewers et al. 1999, Oren et al. 1999, Schafer et al. 2000) a) use stem cores or cross sections b) computer tomography 3) Spatial scaling within trees (Phillips et al. 1996, Ewers and Oren 2000, Oren et al. 1999, Clearwater et al. 1999, Lu et al. 2000, Ewers et al. 2002, James et al. 2002) a) need to measure both circumferential and radial trends b) appropriate use of tree allometric relations 4) Environmental measurements 5) Time lags (Kostner et al. 1992, Martin et al. 1997, Phillips et al. 1997, Ewers and Oren 2000) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Sapwood Estimation Inner extent of sapwood Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Granier-Type Sap Flux Measurements 1) Appropriate thermal protection (Ewers and Oren 2000) a) minimize thermal gradients b) do not overinsulate 2) Sapwood estimation (Waring, et al. 1982. Whitehead et al. 1984, Ewers et al. 1999, Oren et al. 1999, Schafer et al. 2000) a) use stem cores or cross sections b) computer tomography 3) Spatial scaling within trees (Phillips et al. 1996, Ewers and Oren 2000, Oren et al. 1999, Clearwater et al. 1999, Lu et al. 2000, Ewers et al. 2002, James et al. 2002) a) need to measure both circumferential and radial trends b) appropriate use of tree allometric relations 4) Environmental measurements 5) Time lags (Kostner et al. 1992, Martin et al. 1997, Phillips et al. 1997, Ewers and Oren 2000) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Circumferential Trends Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Allometric Relations Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Granier-Type Sap Flux Measurements 1) Appropriate thermal protection (Ewers and Oren 2000) a) minimize thermal gradients b) do not overinsulate 2) Sapwood estimation (Waring, et al. 1982. Whitehead et al. 1984, Ewers et al. 1999, Oren et al. 1999, Schafer et al. 2000) a) use stem cores or cross sections b) computer tomography 3) Spatial scaling within trees (Phillips et al. 1996, Ewers and Oren 2000, Oren et al. 1999, Clearwater et al. 1999, Lu et al. 2000, Ewers et al. 2002, James et al. 2002) a) need to measure both circumferential and radial trends b) appropriate use of tree allometric relations 4) Environmental measurements 5) Time lags (Kostner et al. 1992, Martin et al. 1997, Phillips et al. 1997, Ewers and Oren 2000) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Canopy Environmental Measurements Environmental measurements (VPD) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Granier-Type Sap Flux Measurements 1) Appropriate thermal protection (Ewers and Oren 2000) a) minimize thermal gradients b) do not overinsulate 2) Sapwood estimation (Waring, et al. 1982. Whitehead et al. 1984, Ewers et al. 1999, Oren et al. 1999, Schafer et al. 2000) a) use stem cores or cross sections b) computer tomography 3) Spatial scaling within trees (Phillips et al. 1996, Ewers and Oren 2000, Oren et al. 1999, Clearwater et al. 1999, Lu et al. 2000, Ewers et al. 2002, James et al. 2002) a) need to measure both circumferential and radial trends b) appropriate use of tree allometric relations 4) Environmental measurements 5) Time lags (Kostner et al. 1992, Martin et al. 1997, Phillips et al. 1997, Ewers and Oren 2000) Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Diurnal Time Lags and Daily Fluxes Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Canopy Transpiration – N. Wisconsin Notes: All species show exponential EC rise to a maximum with respect to vapor pressure deficit; Stomatal control exhibits similar function across species; Maximum stomatal conductance varies 2-3 fold among species Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Outline (A) Basic Hydrologic Concepts A.1 Water Resources and Global Terrestrial Ecosystems A.2 Hydrologic budgets and conservation A.3 Evapotranspiration as a residual: the traditional hydrologic approach (B) Transpiration B.1 Direct measurements of transpiration B.2 Indirect measurements of transpiration B.3 Sapflux instrumentation and flux measurements in N. Wisconsin (C) Water Flux Modeling C.4 Groundwater / surface water interactions C.2 Incorporating spatial variation in water fluxes C.3 Incorporating physiology C.4 Results from N. Wisconsin (D) Future Directions? Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg
Recall: Groundwater Flow Ecosystem Hydrology Modeling Group email: dsmackay@facstaff.wisc.edu http://ra.forest.wisc.edu/ehmg