1 / 24

Take out your homework and notes from last week Take out your Notecards Begin your Entry Ticket

One More Week Until Your Unit Test!!!. Take out your homework and notes from last week Take out your Notecards Begin your Entry Ticket Tonight’s HW: Pg 122 # 3, 4, 8 Review worksheet 15 notecards Updates: Thursday/Friday: Unit 1 TEST. Agenda. Review HW/ Entry Ticket Warm-Up!

shauna
Download Presentation

Take out your homework and notes from last week Take out your Notecards Begin your Entry Ticket

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. One More Week Until Your Unit Test!!! Take out your homework and notes from last week Take out your Notecards Begin your Entry Ticket Tonight’s HW: Pg 122 # 3, 4, 8 Review worksheet 15 notecards Updates: Thursday/Friday: Unit 1 TEST

  2. Agenda • Review HW/ Entry Ticket • Warm-Up! • Flow-chart proofs • PROVE-It or HINT-IT! • Cool-Down…

  3. Entry Ticket!

  4. HW Pg. 123 & 127 Pg 123: 6. It is given that BD bisects <ABC so <1 is congruent to <2 by the def of angle bisector. By the Vertical Angle Theorem, <1 is congruent <4 and <2 is congruent to <3. By the Trans Prop of congruence, <4 is congruent to <2 and thus <4 is congruent to <3. Therefore, BC bisects <FBH by the def of angle bisector. Pg 127: 2. Given; addition property; y=7 ( division property) 4. Symmetric Property of =

  5. HW Pg. 123 & 127 • Trans Prop of congruence 8. a. Given b. < 1 and <3 are supp c . Reflexive Property of congruence d. < 1 is congruent to <4

  6. Notecards I asked each of you to bring a pack of notecards today. On my website, I have a list of “Unit 1 Helpful Tools for Proofs.” Print this out because it is a GREAT reference! Also, we can add to the list as we learn new definitions, postulates, theorems, etc. By the next class meeting, I want you to make 15notecards from the list of definitions, theorems, postulates that you still do not remember!

  7. Whiteboard! AB//CD . Solve for x. Justify each step! This is just like your Entry ticket!

  8. Whiteboards! How many sentences do you think there will be in this paragraph proof? Write the first sentence of this paragraph proof. Write the second sentence. Write the 3rd sentence. Write the 4th sentence.

  9. Whiteboard! Given: 1, 2 , 3, 4 Prove: m1 + m2 = m1 + m4 You can either do this as a two-column proof or a paragraph proof! Your choice!!! If you AND your table are stuck, raise your hand and I will come by and give you a hint on a post-it note.

  10. Learning Objective By the end of this period you will be able to: • Write flow-chart proofs

  11. Flow Chart Proofs (2.7) The past week, we have learned how to write two-column proofs and paragraph proofs. A third way is a flow-chart proof, which uses boxes and arrows to show the structure of the proof.

  12. Flow Chart Proofs (2.7) How to Write a Flow-Chart Proof • Use arrows to show what leads to the next step. • Your statement goes in the box, and your reason goes below the box.

  13. Paragraph and Flow Chart Proofs (2.7) Let’s write this two-column proof as a flow-chart proof! .

  14. See if you can write this as a flow-chart proof! Draw the picture on your notes Given: m1 + m2 = m4 Prove: m3 + m1 + m2 = 180°

  15. Given: RS = UV, ST = TU Prove: RT TV On your whiteboards, with your table, write a two-column proof given the flow chart proof for the following theorem:

  16. 5.RT TV 1.RS = UV, ST = TU 1. Given 2.RS + ST = TU + UV 2. Add. Prop. of = 3. Seg. Add. Post. 3.RS + ST = RT, TU + UV = TV 4.RT = TV 4. Subst. 5. Def. of  segs.

  17. This is the theorem that you just proved!

  18. Remember: Theoremsyou have to PROVE! Postulatesyou have to accept as TRUTH! In the next example you are proving Alternate Interior Angles and the Converse of that! You cannot use that in your proof since you are trying to prove it. Note: Corresponding Angles was a POSTULATE; therefore you can use it in your proof!

  19. Paragraph and Flow Chart Proofs (2.7) These next two proofs are very similar as to what you should expect on the Unit 1 Assessment! Let’s see if you can figure it out 

  20. Cool-Down… Reflection – Answer the following questions independently. • On the bottom of your notes, write down the similarities and differences of two-column proofs and paragraph proofs. • Which type do you prefer? Why? • What is your first sentence of a paragraph proof? If a two-column has 5 steps, how many sentences does the paragraph proof have? • Be ready to share out.

  21. Prove-IT OR Hint-IT I am going to give you a blank proof and you and your tablemates are to work as hard as you can to figure out steps that make sense to you and your tablemates. Please write your final proof on one whiteboard. If you need a hint please raise your hand and I will write a step on a post-it note for you.

  22. Prove-IT OR Hint-IT Given: m∠1+m∠3=180° Prove: ∠1 ≅ ∠4 Given: ∠1 ≅ ∠3 Prove: ∠2 ≅ ∠4

  23. Exit Ticket On the back of your Entry ticket, use the two-column proof to write a paragraph AND flow-chart proof.

  24. Review Time! Time to make notecards! Since you have a lot of homework, I want to give you time to work on making notecards. I printed out 10 Proof Help Sheets ( one per table). PLEASE do not write on it since I want to use it for the rest of the year  Start making your notecards!

More Related