280 likes | 428 Views
PROTEIN PHYSICS LECTURE 8. THERMODYNAMISC & STATISTICAL PHYSICS. WHAT IS “TEMPERATURE”? EXPERIMENTAL DEFINITION :. EXPERIMENTAL DEFINITION. = t, o C + 273.16 o. WHAT IS “TEMPERATURE”?. THEORY Closed system: energy E = const. S ~ ln[M].
E N D
PROTEIN PHYSICS LECTURE 8
THERMODYNAMISC & STATISTICAL PHYSICS
WHAT IS “TEMPERATURE”? EXPERIMENTAL DEFINITION : EXPERIMENTAL DEFINITION = t,oC + 273.16o
WHAT IS “TEMPERATURE”? THEORY Closed system: energy E = const S ~ln[M] CONSIDER: 1 state of “small part” with & all states of thermostat with E-. M(E-) = 1•Mth(E-) St(E-) = k •ln[Mt(E-)] St(E) - •(dSt/dE)|E Mt(E-) = exp[St(E)/k] • exp[-•(dSt/dE)|E/k]
All-system’s states with E have equal probabilities For “small part’s” state: depends on e: COMPARE: Probability1(1) = Mt(E-1)/SE’M(E’) ~ exp[St(E)/k] • exp[-1• (dSt/dE)|E/k] and Probability1(1) ~ exp(-1/kBT) (BOLTZMANN) One has: (dSt/dE)|E = 1/T k = kB ______________________________________________________________ -kBT, M Mexp(1) M2.72
(dSth/dE) = 1/T P1(1) ~ exp(-1/kBT) Pj(j) = exp(-j/kBT)/Z(T); j Pj(j) 1 Z(T) = i exp(-i/kBT) partition function СТАТИСТИЧЕСКАЯ СУММА
Along tangent: S-S(E1)= (E-E1)/T1 i.e.,F = E - T1S= const (= F1 = E1 - T1S1) stable Unstable (explodes, V → ): Unstable (fells): unstable
Separation of potential energy in classic (non-quantum) mechanics: P() ~ exp(-/kBT) Classic:=COORD+ KIN KIN= mv2/2 : does not depend on coordinates Potential energy COORD: depends only on coordinates P() ~ exp(-COORD/kBT) • exp(-KIN/kBT) Z(T) = ZCOORD(T)•ZKIN(T) F(T) = FCOORD(T)+FKIN(T) ======================================================================================================================== Elementary volume: (mv)x = ħ (x)3 =(ħ/|mv|)3
IN THERMAL EQUILIBRIUM: TCOORD=TKIN=T We may consider further only potential energy: EECOORD MMCOORD S(E)SCOORD(ECOORD ) F(E)FCOORD , etc.
TRANSITIONS: THERMODYNAMICS
gradual transition “all-or-none” (or first order) phase transition coexistence (T/T*)(E/kT*)~1 coexistence & jump
Second order phase transition change Not observed in proteins up to now: they are too small
TRANSITIONS: KINETICS
n#=nexp(-F#/kBT) n# n TRANSITION TIME: t01 = t0#1 = = # (n/n#)=#exp(+F#/kBT)
PARALLEL REACTIONS: TRANSITION RATE = SUM OF RATES (or: the highest rate) RATE = 1/TIME
# # _ start finish CONSECUTIVE REACTIONS: TRANSITION TIME SUM OF TIMES t0… finish = t0#1 finish + t0#2 finish + …
#main #main _ _ “trap”: on “trap”: out start start finish finish TRANSITION TIME IS ESSENTIALLY EQUAL FOR “TRAPS” AT AND OUT OF PATHWAYS OF CONSECUTIVE REACTIONS: TRANSITION TIME SUM OF TIMES (or: the longest time)
DIFFUSION: KINETICS
Mean kinetic energy of a particle:mv2/2 ~ kBT<> = j Pj(j) j v2 = (vX2)+(vY2)+(vZ2)Maxwell:
Friction stops a molecule within picoseconds: m(dv/dt) = -(3D)v [Stokes law] D – diameter; m ~ D3 – mass; – viscosity tkinet 10-13 sec (D/nm)2in water During tkinet the molecule moves somewhere by Lkinet ~ v•tkinet Then it restores its kinetic energy mv2/2 ~ kBT from thermal kicks of other molecules, and moves in another random side CHARACTERISTIC DIFFUSION TIME: nanoseconds
Friction stops a molecule within picoseconds: tkinet 10-13 sec (D/nm)2in water During tkinet the molecule moves somewhere by Lkinet ~v•tkinet Then it restores its kinetic energy mv2/2 ~ kBT from thermal kicks of other molecules, and moves in another random side CHARACTERISTIC DIFFUSION TIME: nanoseconds The random walk allows the molecule to diffuse at distance D (~ its diameter) within ~(D/L kinet)2steps, i.e., within tdifft tkinet•(D/Lkinet)2 4•10-10 sec (D/nm)3in water
For “small part”: Pj(j) = exp(-j/kBT)/Z(T); Z(T) = j exp(-j/kBT) j Pj(j) = 1 E(T) = <> = j j Pj(j) if allj =: #STATES = 1/P, i.e.: S(T) = kBln(1/P) S(T) = kB<ln(#STATES)>= kBj ln[1/Pj(j)]Pj(j) F(T) = E(T) - TS(T) = -kBT ln[Z(T)] STATISTICAL MECHANICS
Thermostat: Tth = dEth/dSth “Small part”: Pj(j,Tth) ~ exp(-j/kBTth); E(Tth) = j jPj(j,Tth) S(Tth) = kBj ln[1/Pj(j,Tth)]Pj(j,Tth) Tsmall_part = dE(Tth)/dS(Tth) = Tth STATISTICAL MECHANICS
Along tangent: S-S(E1)= (E-E1)/T1 i.e., F = E - T1S= const (= F1 = E1 - T1S1)
Separation of potential energy in classic (non-quantum) mechanics: P() ~ exp(-/kBT) Classic:=COORD+ KIN KIN= mv2/2 : does not depend on coordinates Potential energy COORD: depends only on coordinates P() ~ exp(-COORD/kBT) • exp(-KIN/kBT) ZKIN(T) =K exp(-K/kBT): don’t depend on coord. ZCOORD(T) =Cexp(-C/kBT): depends on coord. Z(T) = ZCOORD(T)•ZKIN(T) F(T) = FCOORD(T)+FKIN(T) ======================================================================================================================== Elementary volume: (mv)x = ħ (x)3 =(ħ/|mv|)3
P(KIN+COORD) ~ exp(-COORD/kBT)•exp(-KIN/kBT) P(COORD) = exp(-COORD/kBT) / ZCOORD(T) ZCOORD(T) =Cexp(-C/kBT): depends ONLY on coordinates P(KIN) = exp(-KIN/kBT) / ZKIN(T) ZKIN(T) =K exp(-K/kBT): don’t depend on coord. T<0: unstable (explodes) <KIN> at T<0 due to P(KIN) ~ exp(-KIN/kBT)