100 likes | 286 Views
PROTEIN PHYSICS LECTURE 5. Energy: E (enthalpy: H=E+PV) PV=N k B T for gases, PV << N k B T for solids & liquids Entropy: S = k B • ln(#STATES) If AB=A+B E AB = E A +E B ; V AB = V A +V B ; S AB = S A +S B
E N D
PROTEIN PHYSICS LECTURE 5
Energy: E (enthalpy: H=E+PV) PV=NkBT for gases, PV << NkBTfor solids & liquids Entropy: S = kB•ln(#STATES) If AB=A+B EAB= EA+EB; VAB= VA+VB; SAB= SA+SB while #AB= #A• #B Free energy: G = H-TS F = E-TS ------- G: used when P=constfor solids & liquids Chemical potential: G(1) = G/N Probability ~ exp(-G/kBT) max G min
G = H-TS; dG = (dH-TdS) - SdT • At T=const (i.e., at dT=0): • at equilibrium, G = min, i.e., dH-TdS=0. • Thus: • T = dH/dS • S = -dG/dT • H = G+TS = G-T(dG/dT) • Probability ~ exp(-G/kBT) • kB= 2cal/(61023) = 2cal/mol = R • kB 300o = R 300o = 0.6 kcal/mol
int: “Free energy of interactions” Chemical potential: m G(1) = Gint - T•kBln(V(1)) Gint + T•kBln[C] EQUILIBRIUM for transition of molecule 1 from A to B: GA(1) = GB(1) chemical potentials in A and B are equal GintAB = GintB – GintA GintAB= kBT•ln([CinA]/[CinB]) ===================================================
Experiment: GintAB= kBT•ln([C1inA]/[C1inB]) SintAB = -d(GintAB)/dT HintAB = GintAB +TSintAB [C] of C6H12 in H2O: 50 times less than in gas; 100000 times less than in liquid C6H12 C6H12 T=2980K=250C
-2/3 Loss: S (usual case) -2/3 +1/3 H-bond: directed Loss: LARGE E (rare case)
High heat capacity d(H)/dT: Melting of “iceberg”
20-25 cal/mol per Å2 of accessible non-polar surface
______ large effect _______ small ______ large