1 / 22

from the thesis works of Ignazio Vilardi Anna Palasciano Francesca Ciocia

Spatial & Energy resolutions (exp.& MC) for the Axial HPD-PET concept with YAP and LYSO crystals. from the thesis works of Ignazio Vilardi Anna Palasciano Francesca Ciocia. New 3D axial HPD-PET concept. p. PMTs. Arrays of long ( Lc ~ 10-15 cm ) crystal bars

Download Presentation

from the thesis works of Ignazio Vilardi Anna Palasciano Francesca Ciocia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spatial & Energy resolutions (exp.& MC)for the Axial HPD-PET concept with YAP and LYSO crystals from the thesis works of Ignazio Vilardi Anna Palasciano Francesca Ciocia

  2. New 3D axial HPD-PET concept p PMTs Arrays of long (Lc~10-15 cm) crystal bars read out at both sides by segmented HPDs The 3D PET cameras Standard radial concept axis axis Many rings of crystal–photodetector blocks radially displaced Lc =1.5-3cm Concept made possible by CERN development of rectangular segmented 5‘’ HPDs with integrated self-triggering electronics

  3. A HPD-PET CAMERA MODULE • Array of 208 scintill.s (LSO, LYSO, YAP, LaBr3, n=1.8-1.9) • 16x13 crystals (3.2[Rx]x3.2[Ry]x150[Lc] mm3) • tx=51mm, ty=42mm  tX,Y>3·la (LSO)  e2g(⊥)~ 90% • with spacing: 4x4 mm2 Rx = 64 mm, Ry = 52 mm Rx Gain HPD : ~ 3.103 (Uop= 12 kV ) or 5.103 (Uop = 20 kV) Ry Lc • "Proximity focused“ HPDs • sapphire window (n~1.8): • (better light transmission) • (crystal-window refractive indices matching) • optical transport image 1 : 1 • segmented (4x4 mm2) silicon detector pads • (each crystal readout by its pad, no cross-talk) • each pad with integrated lecture electronics (2 VATA-Gp5)

  4. AFOV 25 cm PMT1 PMT2 LSO Dt = 7 ns 7.5 31 cm LSO 7.5 88 matrix (2x2 cm2)  4PMTs Dz (FWHM)~ 5 mm DV= (FWHM)~ 20 mm3 Lc =15mm~ 1 la e2g(⊥)~ 53% DE/E (511 keV) ~ 17% Heavy electronics (PSD) “Reference Radial PET”: TheHigh Resolution Research Tomograph (HRRT) (CTI, MPI, Karolinska …) K. Wienhard et al., IEEE Trans. Nucl. Sci. 49 (2002) 104–10 • ANGER LOGIC: a block seen by 4 PMTs • CM of signals in 4 PMTs  •  interac. point (x,y) of g • DOI (z) from PHOSWICH tecnique • Pulse Shape Discrimin. (PSD) Lc g z g x y • 8 panels with 9  13 blocks • 2  64 crystals per block • 120000 crystals 2.12.1x7.5mm3 • 936 (20x20 mm2) PMTs

  5. YAP:Ce LSO:Ce LuAP:Ce LaBr3:Ce Density ρ (g/cm3) 5.55 7.4 8.34 5.3 7.13 Effective atomic charge Z 32 66 65 75 46.9 Scintillation light output (photons / MeV) 18000 23000 ~10000 ~61000 ~9000 wavelength lmax of max. emission (nm) 370 420 370 356 480 Refractive index n at lmax 1.94 1.82 1.95 ~2.15 ~1.88 Bulk light abs. length lbulk (cm) at lmax ~20 ~40 Principal decay time (ns) 27 40 18 300 30±5 Mean γ atten. length la at 511keV (mm) 22.4 11.5 10.5 ~11.6 ~20 Photo fraction at 511 keV (%) 4,5 32.5 30.5 41.5 15 Energy resolution (FWHM) at 663 keV 4.5 8 2.9 Inorganic Scintillation crystals • Criteria to be taken into account:light yield, absorption length, photofraction, self absorption, decay time, availability, machinability, price. BGO LSO (LYSO) is the most interesting crystal scintillator : fast (40 ns), short att. length (~12mm) at 511keV, high photofraction (32%), not hygroscopic, but high intrinsic energy resolution (~5% FWHM)

  6. 1) ADVANTAGES OF THE AXIAL HPD-PET CONCEPT High Granularity  exact reconstruction of the g interaction point (no parallax error) HPD1 • x,y from fired scintillator • σ(x,y) = 3.2 mm/√12= 0.92 mm • Dx,Dy (FWHM) = 2.2 mm • z (DOI) from the ratio of the photoelectrons • detected at the two crystal ends • σ(z) linked to the scint. choice Reduced # of photodet., scint., electr. (12 module PET: only 24 HPDs) • No limit to module radial (x,y) dimension • higher efficiency Double scatt. events in one module (Compton-photoel.) reconstruction • higher efficiency z y g g (Ry) x (Rx) HPD2 208 4 x 4 mm2 Si ‘pads’ centred on crystal matrix

  7. 2) ADVANTAGES OF THE AXIAL HPD-PET CONCEPT possibility to reconstruct the int. point of part of g’s that suffers a double (Compton + photoelectric) event in the same module COMPTON + PHOTOELECTRIC events- ~ 25% Compton events (50 keV [energy cut] < E < 170 keV) followed by a photoelectric one in the same module can unambiguously be reconstructed detection efficiency increases but spatial (DOI) resolution worsens

  8. Lc, leff, No:KEY PARAMETERS OF THE HPD-PET CONCEPT • Lc:crystal length • leff:attenuation length of scint. photons • 1/leff = 1/(lbulk* cos q) + c’/(cabs) • No:light yield≡p.e.’s (511keV g) in a Lc~0 crystal • (nph/keV, sci.ph.transport, q.e. & wind. of photodet.) HPD1 Z σz, σE/E, σt: (only statistical) g cabs g q a) crystal axial length (Lc) worsens all resolutions HPD2 limit of Lc: 10 ~15cm b) light yield (No) improves all resolutions c) contrasting effects ofleff on σz& σE/E, σt • optimize leff value by wrapping or coating the crystal lateral surface

  9. PROOF of the HPD-PET CONCEPT with YAP and LYSO crystals and PMTs •  BaF2 (used with a 22Nasource) •  Pb collimator Pb +source • YAP (Preciosa Co) • LYSO (Photonic Materials) • (3.2 x 3.2 x 50-150 mm3) • PMT H3164-10 (F=8mm, nw=1.47,bialkali) • B8850Quantacon(F=5cm,nw=1.47,bialkali) • linear translatorM-511(Phys.Instrum.)

  10. polished 3x3x100 mm3 YAP-LYSO comparison z=1 cm z = 5 cm z =9 cm 22Na source YAP+H3164-10 QL+QR (5cm)= 1692 ch photoelectric peak (511 keV) Compton ~ 10% ΔE/E(FWHM) ~ 14% LYSO+H3164-10 QL+QR (5cm)= 2295 ch • LYSO produces more light (pe’s) than YAP • LYSO has a higher photofraction, lower energy resolution than YAP

  11. effin polished(n2=1) 3x3x100 mm3 YAP-LYSO No/2 LYSO= 42.6±0.9 cm QL exp(-z/leff), ≈ n1/n2, n1/nW YAP= 20.8±0.4 cm 1/z2≈ n1/nW • LYSO more transparent (higher leff than YAP) • too high l-eff values (poor sz) both for LYSO and YAP

  12. Crystal wrappings or metal-coatings change light attenuation length of a YAP (3.2 x 3.2 x 100 mm3) No/2 polished QL best solution • at z=0: N0(teflon) > N0(polished) (diffusing wrapping) • leff (polished) / leff(teflon) = 1.9 • possibility to tune leff value with metal coatings • metal coating (n2) reduces No

  13. E/E, z, tdc(z=5cm) in coated 10cm YAP & LYSO (511 keV) vs leff YAP LYSO a) statistical b) phenomen. NO = 510±18 pe NO = 724±34 pe NO = 753±34 pe

  14. very low leff in a Lc=5 cm YAP with raw (smeared) lateral surfaces • no exp behaviour of Q1 (fermi function) • no coincident Q1-Q2 signals in a Lc = 10 cm YAP • very low leff , but dependent with z  • good sz but z-dependent, bad sE/E

  15. z , E/E in coated-smeared YAP & LYSO vs z, leff, Lc, Eg • crystal length worsens sz, does not influence much sE/E • worse sz and sE/E values at lower Eg • very low leff (raw lat.surf) values  Lc limited, z-dep. of sz

  16. Geant4 simulations for YAP long crystals + PMTs long and thin cylindrical crystal (n1, Nph/keV) lat.surface: polished, smeared (s), wrapped (nwrap), coated (nwrap,ik,t) polished bases coupled to PMTs (nwin, t,q.e.) Polar diagram of reflected-refracted scintillation photons I incident unpol. opt. photons A absorption R reflection T transmission D Lambertian diffusion SR diffuse reflect. (smear) ST diffuse transmiss.

  17. nwrapnwin (nwin=1.47) (nwrap=1.0) *refr.ind.match * nwrap does not change leff decreases No worsens E/E, z, t nwin decreases leff increases No improves E/E, z, t

  18. absorption diffusion smearing • absorp. & diffus. • similar effects • decrease leff • (diff. increases No) • improve z • worsen E/E, t • smearing • to be avoided • (N1 no more exp.)

  19. Geant4 reproduction of exp. results YAP + H3164-10 PMTs

  20. Geant4 predictions for engraved crystals • mechanical or laser ablation • engravings • (effects similar to absorp.) • decrease leff • improve spatial resol. • worsen energy-time resol. • & • high reproducibility • to the N0and leff • values of the many • HPD-PET crystals to be exp. proven

  21. HRRT vs. HPD-PET AFOV 25 cm 31 cm Full ring scanner A possible final configuration for a HPD-PET R = 170 mm • 12 modules • F =34 cm • Lc = 15 cm • 2496 crystals 3.2x3.2x150mm3 • 24 5” rect. HPDs • det.Vol. 3834cm3 • det.depth 41mm • DW/4p~ 0.165 • eTOT(LSO) (%) ~ 8.5 (ph) + 7.5 (Co-rec) • eTOT(LaBr3)(%) ~ 1.9 (ph) + 4.9 (Co-rec) • 8 panels 9x13 blocks • F =31 cm • AFOV = 25 cm • 120000 crystals 2.1x2.1x7.5mm3 • 936 PMTs 2x2cm2 • det.Vol. 3962cm3 • det.depth 15mm • DW/4p~ 0.344 • eTOT(LSO)(%) (exp) ~ 6.9 z y x

  22. HPD-PET(Lc=10cm) vs HRRT

More Related