620 likes | 706 Views
Pulse Methods for Preserving Quantum Coherences T. S. Mahesh Indian Institute of Science Education and Research, Pune. Criteria for Physical Realization of QIP. Scalable physical system with mapping of qubits A method to initialize the system Big decoherence time to gate time
E N D
Pulse Methods for Preserving Quantum Coherences T. S. Mahesh Indian Institute of Science Education and Research, Pune
Criteria for Physical Realization of QIP • Scalable physical system with mapping of qubits • A method to initialize the system • Big decoherence time to gate time • Sufficient control of the system via time-dependent Hamiltonians • (availability of universal set of gates). • 5. Efficient measurement of qubits DiVincenzo, Phys. Rev. A 1998
Contents • Coherence and decoherence • Sources of signal decay • Dynamical decoupling (DD) • Performance of DD in practice • Understanding DD • DD on two-qubits and many qubits • Noise spectroscopy • Summary
Contents • Coherence and decoherence • Sources of signal decay • Dynamical decoupling (DD) • Performance of DD in practice • Understanding DD • DD on two-qubits and many qubits • Noise spectroscopy • Summary
Closed and Open Quantum System Environment Environment Hypothetical
Coherent Superposition An isolated 2-level quantum system | = c0|0 + c1|1, with |c0|2 + |c1|2 = 1 Density Matrix rs = || = c0c0*|0 0| + c1c1*|1 1|+ c0c1*|0 1| + c1c0*|1 0| c0c0*c0c1* c1c0* c1c1* Coherence = Population
Effect of environment Quantum System – Environment interaction Evolution U(t) System Environment System Environment ||E = (c0|0 + c1|1)|E c0|0|E0 + c1|1|E1 Entangled U(t) |0|E |0|E0 |1|E |1|E1 U(t) U(t) System Environment
Decoherence • = ||E |E| • = c0c0*|0 0||E0 E0| + c1c1*|1 1||E1 E1| + • c0c1*|0 1||E0 E1| + c1c0*|1 0||E1 E0| • rs = TraceE[r] = c0c0*|0 0| + c1c1*|1 1|+ • E1|E0 c0c1*|0 1| + E0|E1 c1c0*|1 0| • c0c0*E1|E0 c0c1* • E0|E1 c1c0* c1c1* Coherence = Population Coherence decays irreversibly |E1(t)|E0(t)| = eG(t) Decoherence
Contents • Coherence and decoherence • Sources of signal decay • Dynamical decoupling (DD) • Performance of DD in practice • Understanding DD • DD on two-qubits and many qubits • Noise spectroscopy • Summary
Signal Decay 13-C signal of chloroform in liquid Signal x Time Frequency
Signal Decay Decoherence Incoherence Amplitude decay Phase decay Depolarization T1 process T2 process Relaxation
Signal Decay Decoherence Incoherence Amplitude decay Phase decay Depolarization T1 process T2 process Relaxation
Incoherence Individual (30 Hz, 31 Hz) Net signal – faster decay Time
Hahn-echo or Spin-echo (1950) Echo Signal y /2-x + d d y Symmetric distribution of pulses removes incoherence
Signal Decay Decoherence Incoherence Amplitude decay Phase decay Depolarization T1 process T2 process Relaxation
Time to reach equilibrium, (energy of spin-system is not conserved) T1 Lifetime of coherences, (energy of spin-system is conserved) T2 Bloch’s Phenomenological Equations (1940s)
Bloch’s Phenomenological Equations (1940s) Solutions in rotating frame: 0 0
Signal Decay Decoherence Incoherence Amplitude decay Phase decay Depolarization T1 process T2 process Relaxation
Effect of environment ’ = E() = ∑ Ek Ek† (operator-sum representation) k
Amplitude damping (T1 process, dissipative) g(t) is net damping : eg., g(t) = 1 et/T1 1 0 0 (1g)1/2 p 0 0 1 p E0 = p1/2 = 0g1/2 0 0 0 0 g1/20 E3 = (1 p)1/2 E1 = p1/2 (1g)1/20 0 1 E2 = (1 p)1/2 E()= ∑ Ek Ek† k Asymptotic state (t , g 1) : In NMR, p = ~ 0.5 + 104 1 1 + eE/kT
Amplitude damping (T1 process, dissipative) Measurement of T1: Inversion Recovery Equilibrium Inversion M() = 1 2exp( /T1)
Signal Decay Incoherence Decoherence Amplitude decay Phase decay Depolarization T1 process T2 process Relaxation
Phase damping (T2 process, non-dissipative) g(t) is net damping : eg., g(t) = 1 et/T2 1 0 0 (1g)1/2 0 0 0 g1/2 a 0 0 1-a a b b* 1-a E0 = E1 = = (t) = E()= ∑ Ek Ek† k Stationary state (t , g 1) :
Phase damping (T2 process, non-dissipative) Spin-Spin Relaxation dMx(t)Mx(t) dt T2 = Signal envelop: s(t) = exp( t/T2) Transverse magnetization: Mx(t) Re{01(t)} FWHH = /T2 Bloch’s equation : Solution : Mx(t) = Mx(0) exp( t/T2)
Contents • Coherence and decoherence • Sources of signal decay • Dynamical decoupling (DD) • Performance of DD in practice • Understanding DD • DD on two-qubits and many qubits • Noise spectroscopy • Summary
Carr-Purcell (CP) sequence (1954) Signal y /2y y y Shorter is better (limited by duty-cycle of hardware) H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954)
Meiboom-Gill (CPMG) sequence (1958) Signal x /2y x x Robust against errors in pulse !!! S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 688 (1958)
CPMG Dynamical effects are minimized Dynamical decoupling Sampling points 1 2 3 4 time j = T(2j-1) / (2N) Linear in j Time Signal CP CPMG No pulse Hahn Echo S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 688 (1958)
Dynamical Decoupling (DD) Götz S. Uhrig PRL 98, 100504 (2007) CPMG (1958): Uniformly distributed pulses Uhrig 2007 (UDD): Optimal distribution of p pulses for a system with dephasing bath j = T sin2 ( j /(2N+1) ) T = total time of the sequence N = total number of pulses
Carr & Purcell, Phys. Rev (1954) . Meiboom & Gill, Rev. Sci. Instru. (1958). Carr Purcell Sequence time 0 T Was believed to be optimal for N flips in duration T 1 2 3 4 5 6 7 j = T(2j-1) / (2N) Linear in j Uhrig Sequence Uhrig, PRL (2007) time 2 1 3 4 5 6 7 0 T Proved to be optimal for N flips in duration T j = T sin2 ( j /(2N+1) )
Dynamical Decoupling (DD) Hahn-echo (1950) CPMG (1958) PDD (XY-4) (Viola et al, 1999) UDD (Uhrig, 2007) CDDn = Cn = YCn−1XCn−1YCn−1XCn−1 C0 = (Lidar et al, 2005)
Contents • Coherence and decoherence • Sources of signal decay • Dynamical decoupling (DD) • Performance of DD in practice • Understanding DD • DD on two-qubits and many qubits • Noise spectroscopy • Summary
DD performance ION-TRAP qubits M. J. Biercuk et al, Nature 458, 996 (2009)
DD performance Electron Spin Resonance (-irradiated malonic acid single crystal) J. Du et al, Nature 461, 1265 (2009) Time (s) Time (s)
DD performance Solid State NMR 13C of Adamantane Dieter et al, PRA 82, 042306 (2010)
Dynamical Decoupling in Solids 13C of Adamantane D. Suter et al, PRL 106, 240501 (2011)
Contents • Coherence and decoherence • Sources of signal decay • Dynamical decoupling (DD) • Performance of DD in practice • Understanding DD • DD on two-qubits and many qubits • Noise spectroscopy • Summary
Sources of decoherence – dipole-dipole interaction Randomly fluctuating local fields Spin in a coherent state
Sources of decoherence – dipole-dipole interaction Randomly fluctuating local fields Spin looses coherence
Redfield Theory: semi-classical System - > Quantum, Lattice - > Classical System Completely reversible No decoherence System+ Random field (coarse grain)
Auto-correlation Local field X(t) time Auto-correlation function G() = X(t) X*(t+) = dx1 dx2 x1 x2 p(x1,t) p(x1,t | x2, ) Fluctuations have finite memory: G() = G(0) exp(||/ c) c Correlation Time 2c 1+ 2c2 Spectral density J() = G() exp(-i) d = G(0)
Spectral density 2c 1+ 2c2 J() = G(0) J() c = 1 (after secular approximation)
Spectral density 2c 1+ 2c2 J() = G(0) J() c = 1 c0c0*eGtc0c1* eGtc1c0* c1c1* 2 J() 2 = d 3 8 15 4 3 8 1 T2 1 T1 J(2) + J() + J(0) J(2) + J() 0 Dipolar Relaxation in Liquids
Effect of decoupling pulses L. Cywinski et al, PRB 77, 174509 (2008). M. J. Biercuk et al, Nature (London) 458, 996 (2009) 0 Time-dependent Hamiltonian exp(-iH(t) dt) Magnus expansion
Filter Functions Cywiński, PRB 77, 174509 (2008) M. J. Biercuk et al, Nature (London) 458, 996 (2009) |x()|= e() Fourier Transform of Pulse-train F() F() 2 J() 2 = F() d 0
Filter Functions J() Modified Spectral density: J’() = J() F() 2 J() 2 = F() d 0 Residual area contributes to decoherence Cywiński, PRB 77, 174509 (2008) M. J. Biercuk et al, Nature (London) 458, 996 (2009)
Contents • Coherence and decoherence • Sources of signal decay • Dynamical decoupling (DD) • Performance of DD in practice • Understanding DD • DD on two-qubits and many qubits • Noise spectroscopy • Summary
Two-qubit DD Electron-nuclear entanglement (Phosphorous donors in Silicon) No DD PDD Wang et al, PRL 106, 040501 (2011)