540 likes | 730 Views
σ γ / k 0 measurements at Budapest PGAA facility. Zsolt R évay , László Szentmiklósi Institute of Isotopes Budapest. Practice of PGAA in Budapest. k 0 method Relative standardization Inelastic neutron scattering ( n,n’ γ ) background Using Hypermet
E N D
σγ / k0 measurements at Budapest PGAA facility Zsolt Révay, László Szentmiklósi Institute of Isotopes Budapest
Practice of PGAA in Budapest • k0 method • Relative standardization • Inelastic neutron scattering (n,n’γ) background • Using Hypermet • Handling asymmetric peaks and overlaps • Non-linearity • Efficiency
Whyk0method? • Most accurate source of needed data • k0 philosophy guarantees the highest reliability in measurements • k0 idea can be better approximated in a beam • Should be improved
Advantages of measurements in (cold) neutron beam • No epithermal neutrons • No non-1/v behavior (in cold beam) • Lambert-Beer type self-shielding (low-divergence beam instead of isotropic neutron field)
Research Reactor • 20 MW • water cooled • water moderated • thermal flux 1014 cm-2 s-1
Neutron guides • Ni or supermirror guides • relatively small losses • low background
Cold neutron source at Budapest 400 cm320 K liquid H2
Budapest PGAA facility • 10 MW • LH cold source • curved guide • Compton-suppressed HPGe • chopper
1992 upgraded reactor starts1995 first PGAA measurement on the thermal beam1997–1998 establishment of PGAA data library1999–2000 applications2001 new cold beam2002 –2004 Handbook and Atlas
Main results in methodology • Data library transportable to other labs • evaluation software • complete analysis • analytical precision for the important elements relative uncertainty: 1–2% • application of chopped beam
Hypermet-PC • Asymmetric peak shape • Non-linearity • Efficiency fit • Partial peak shape calibration
Efficiency • One absolute source • Lines from relative sources are normalized to it • 200-300 data points • 0.2% uncertainty at mid energy range • 2% uncertainty at high energy range
Prompt k0 factors • relative to Cl 1951 keV line • relative to H 2223 keV line • σγ = θ γ σ
Decay gammas in PGAA spectra • can be used for analysis, too • k0-s can be measured • depending on half-life, saturation correction needed
Prompt saturation factor • activation and decay at the same time
Advantages of the in-beam measurement compared tocyclic activation • uncertainties from • half-life • timing do not accumulate
Beam chopper • Beam periodically shielded by Gd, 6Li • Variable opening: 0.2 – 50% • variable frequency: 3 – 100 Hz
Time of flight chopper detector gamma radiation n Rotating and standing slits
Candidates for in-beam measurement < 1 s: Na, < 1 min: F, Sc, Ge, Pd, Ag, In, Er, Hf, W, < 10 min Mg, Al, V, Cr, Se, Br, Rh, Dy, Ir, < 1 h: Ga, Rb, Sn, I, Pr, Nd, Ta, Re, <1 day: Mn, Cu, Sr, Cs, Ba, Eu, Lu, longer: As, Ru, La, Ce, Tb, Ho, Yb, Au,
Isotopes with high Er Q0 Er Isot sigma 1.12 2280 37S 0.15 1.14 1040 64Cu 2.17 1.908 2560 65Zn 0.76 2.38 3540 75mGe 0.17 1.57 3540 75Ge 0.34 5.93 4300 90mY 0.001 5.05 6260 95Zr 0.0499 1.8 2950 131I 6.2 1.2 1540 143Ce 0.95
Beam open prompt gamma rays decay gamma rays Usual PGAA spectrum Beam closed only decay gamma rays cyclic NAA spectrum Simultaneous PGAA and NAA measurement with a chopper
In-beam saturation factor (B) (LSz) Type I nuclides, on-line counting Type IV nuclides Type IV/B nuclides Count rate of #3 from Bateman-Rubinson equations: Type IV/A nuclides
Results 1/3 (LSz) • Literature data taken from: • F. De Corte, A. Simonits, Atomic Data and Nuclear Data Tables 85 (2003) 47. • S. Roth, F. Grass, F. De Corte, L. Moens, K. Buchtela, J. Radioanal. Nucl. Chem. 169 (1993) 159. • S. Van Lierde, F. De Corte, D. Bossus, R. Van Sluijs, S. Pommé, Nucl. Instr. Meth. A 422 (1999) 874.