1 / 31

Center for High Performance Power Electronics The Ohio State University

基于 SiC 和 GaN 功率器件的 最优拓扑及其在电力系统中的应用. Dr. Longya Xu. Center for High Performance Power Electronics The Ohio State University. 主要内容. 三、 SiC 和 GaN 功率器件技术 发展现状. 二、 SiC 和 GaN 功率器件特点. 一、引言. 四、 基于 SiC 和 GaN 功率器件的最优拓扑. 五、研究内容及未来电网应用. 一、引言. 第一代半导体功率器件 以 Si 双 极型 (BJT) 功率 晶体管为代表.

shona
Download Presentation

Center for High Performance Power Electronics The Ohio State University

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 基于SiC和GaN功率器件的 最优拓扑及其在电力系统中的应用 Dr. LongyaXu Center for High Performance Power Electronics The Ohio State University

  2. 主要内容 三、SiC和GaN功率器件技术发展现状 二、SiC和GaN功率器件特点 一、引言 四、基于SiC和GaN功率器件的最优拓扑 五、研究内容及未来电网应用

  3. 一、引言 第一代半导体功率器件 以Si双极型(BJT)功率晶体管为代表 人们寄希望于宽禁带半导体功率器件来解决第一代、第二代功率器件的输出功率低、效率较低和工作频率有限等方面的问题 向大功率、和高效,高频方向发展 第二代半导体功率器件 以Si场效应晶体管和IGBT为代表 第三代半导体功率器件 以SiC场效应功率晶体管和GaN高电子迁移功率晶体管 为代表

  4. 二、宽禁带半导体SiC和GaN的特点 • SiC和GaN由于独特晶体结构,其禁带宽度达到2.2eV(3C-SiC),3.3eV(4H-SiC)和3.4eV(GaN),远高于GaAs(1.4eV)和Si(1.1eV),它们具备以下特点: • 工作温度很高,理论值结温可达600℃,从而器件的冷却系统可大为简化。 • 热导率高, SiC达4.9W/cm℃, (Si为1.4),优势明显;SiC热导率远远高于大多数半导体,室温时几乎高于所有金属. • 硬度高于GaAs和Si,SiC达到9级,仅次于金刚石;便于器件实施高密度、大功率集成。 • 电子饱和漂移速度高,达到2x107cm/s(SiC)和2.5x107cm/s(GaN),适于高频工作。 • 击穿电场高达2x106V/cm(4H-SiC)和3.3x106V/cm(GaN)为Si的8倍和10倍,能够实现高工作电压。

  5. AlGaN/GaN异质结二维电子气浓度高(2X1013/cm2),SiC的掺杂浓度可达1019/cm3,能够实现高电流密度。AlGaN/GaN异质结二维电子气浓度高(2X1013/cm2),SiC的掺杂浓度可达1019/cm3,能够实现高电流密度。 • 本征载流子浓度低,(4H-SiC为8.2x10-9cm-3,GaN为1.9X10-10cm-3),便于管芯隔离。 • 抗辐照能力比GaAs和Si强~2个数量级,另外开关损耗低1~2个数量级。 • SiCand GaN BASED POWER ELECTRONICS • + 50 to 75 0 C operating temperature • 2-4X in power density • 1-5% increase in conversion efficiency

  6. 三、SiC和GaN功率器件技术发展现状 从20世纪90年代起,美国国防部就开始支持(>$300M)SiC功率器件研究。 21世纪初,美国国防先进研究计划局(DARPA)启动的宽禁带半导体技术计划(WBGSTI -widebandgap semiconductor technology initiative ),成为加速和改善SiC和GaN等宽禁带材料和器件特性的重要“催化剂” 。

  7. Significant Government investment has yielded near defect-free wafers • Defects (limits yields/performance) now at acceptable levels from multiple suppliers • Evolution to 4” wafers significantly impacts $/amp cost (77% more die/wafer)

  8. SiC diodes available since 2001. Price, performance/demand have improved metrics. • 2009 commercialization of switches - dramatic increase in potential SiC applications. • > 2x Reduction in Price of SiC Diode • Higher Quality Wafers • Larger Production Volumes • Increase Wafer Size Q3-FY08 11.3 Mega-Amps Shipped JBS = Junction Barrier Schottke • 600V • 1A, 2A, 4A, 6A, 8A, • 10A, 20A • 1200V • 5A, 10A & 20A

  9. SiC diodes and switches are highly potential in many applications; • SiC based power electronics is an enabling technology for electrifications • Majority of power applications require • switch + diode. • Power supplies • Motor drives • Inverters • Switches are now available • Continued “electrification” + renewed focus on energy independence + conser- vation will accelerate demand for SiC Source: Yole’ Development Market Research Report Power Supply Benefits HEV Electrical Subsystems • Large SiC Emerging Market: • - Diodes reduces motor losses up to 30% • - Diodes + MOSFETs reduce losses >50% • - Liquid cooling system eliminated; • dropping wt & system cost • - Projected fuel efficiency gain - 5-15% • Area reduced 38% • Weight reduced 44% • Power density up 61% Honda – 680V, 200A SiC MOSFET inverters-> 46% loss reduction Nissan – SiC hetero-junction diode inverter-> 50% loss reduction

  10. 现有的SiC功率器件技术数据

  11. 四、基于SiC和GaN功率器件的最优拓扑 传统的电力电子拓扑 集中的 多电力电子器件 开关矩阵 输入端口 输出端口 集中的 多电力电子器件 开关矩阵 集中的 大容量LC 储能元件

  12. 适宜于SiC和GaN 器件的最优拓扑 一种可能的拓扑 – 开关电容元

  13. 例子: 电容开关子电路 - 模块性 分散性拓扑 By utilizing the new topology, the power loss on the input capacitor is reduced to 3.1% of its original value . The output voltage ripple is reduced to 11% of the original value . Voltage QuadruplerDC/DC stage

  14. Voltage doublerbased dc/ac stage.

  15. ExperimentalDevelopmentResults

  16. Photovoltaic Micro-Inverter without Inductor and Transformer

  17. 五、研究内容及未来电网应用 经过20多年的发展,在降低电力设备体积和成本以及提高效率等方面,电力电子技术已经成为主要手段。在电力输配电系统中,电力电子技术在效率和成本方面能够完成传统技术所不能提供的技术支持。在未来电网发展中电力电子技术将发挥越来越重要的作用。

  18. DC的产生形成了最初的电力系统,并且可以认为是最自然的电力形态。AC系统出现是因为变压器提供了一种相对简单的可在不同等级之间变换电压的方法,以适应电力系统的要求。DC的产生形成了最初的电力系统,并且可以认为是最自然的电力形态。AC系统出现是因为变压器提供了一种相对简单的可在不同等级之间变换电压的方法,以适应电力系统的要求。 基于碳化硅的HVDC和FACTS技术应用到输电和配电系统后,将对电力系统智能化产生巨大的影响。将以高智能方式, 在高性能, 低成本、高效率和小体积等方面对传统的AC技术发起挑战。

  19. 研究内容 适用于宽能带电力电子器件的新型拓扑 宽禁带电力电子器件驱动技术 宽禁带半导体器件环境适应性验证技术 宽禁带半导体器件在电力系统中的新应用

  20. 1。扣装式(clamp-on)微型传输线串联补偿器

  21. 微型传输线串联补偿器 – 原理图

  22. 微型传输线串联补偿器 – 效果

  23. 2 半导体固态电路变压器 2.1 传统式变压器 2.2 半导体固态电路变压器

  24. Silicon Carbide (SiC) Power Semiconductors Enabling The Future “More Electric” Economy • DOE goal of 20% wind power • NREL/SR-500-38515 2% eff increase $18B/yr US fuel cost savings • Minimize active cooling • Increase effective generator rating to 1.0 from 0.5 • US Solar Connected ~24 GW by 2015 • All solar is connected to grid via power electronics High Temperature 1-3% increase watts/m2 100-200 lb savings High Efficiency 2X Inverter Pwr Density Improv. High Frequency 80 tons savings 100-300 lb savings • Replace 60Hz utility transformers with high frequency • 4X reduction in radar power supply weight • Minimize active cooling • Enables single cooling loop • Improves range by 3%

  25. 近期研讨会信息 1. DoE the first workshop of "Wide Bandgap Semiconductors in Clean Energy". Workshop is in Chicago on July 25th  WBG semiconductors operate at temperatures above 150 oC without external cooling, have longer lifetimes at higher operating voltages, and switch at higher frequencies with fewer power.   In the same way that the invention of the silicon chip 50 years ago led to the development of the modern computer and today’s electronics industry, WBG semiconductors such as silicon carbide (SiC) and gallium nitride (GaN), as well as zinc oxide (ZnO) and diamond (C), offer a similar opportunity to revolutionize the next generation of microelectronics and clean energy innovations. 2. IEEE Workshop on Applications of Wide-band-gap Power Devices Topics include : • Material growth and device fabrication, WBD circuit topologies • High power applications of SiC device Renewable energy and transportation Approximate date of the workshop: Location: • Middle October of 2013 The Ohio State University

  26. 谢 谢 !

More Related