1 / 8

SEM dengan SmatPLS

SEM dengan SmatPLS. Evaluasi Goodness of Fit Model SEM pada SmartPLS. Model SEM (Structural Equation Model) dalam PLS, terdiri dari : Model Pengukuran (Outer Model) Model Struktural (Inner Model). Evaluasi Outer Model. Model Pengukuran dengan indikator refleksif :

sondra
Download Presentation

SEM dengan SmatPLS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SEMdenganSmatPLS

  2. Evaluasi Goodness of Fit Model SEM padaSmartPLS Model SEM (Structural Equation Model) dalam PLS, terdiridari: • Model Pengukuran (Outer Model) • Model Struktural (Inner Model)

  3. Evaluasi Outer Model Model Pengukurandenganindikatorrefleksif: • Tingkat validitassuatuindikatorthdvariabelygdiukurnyadptdiujimenggunakanvaliditaskonsep (construct validity). • Validitaskonsep/variabeldptdievaluasidariconvergent validity dandiscriminant validity. • Reliabelitasuntuk block indicator dievaluasidengancomposite realibility

  4. ValiditasIndikatorReplektif • Convergent validity terpenuhijikaskorygdiperolehdariduainstrumenberbedaygmengukurkonsepygsama, menunjukkankorelasitinggi. • Suatuindikatordisebut valid (construct) jikanilaikorelasiatauouter loading minimal 0.50.

  5. ValiditasIndikatorReplektif • Discriminant validity terpenuhijika, berdasarkanteori, duavariabeldiprediksitidakberkorelasidanskorygdiperoleh dg mengukurnyabenar-benarsecaraempirismembuktikanhaltersebut. • Suatuindikatordisebut valid diskriminanjikacross loading indikatortsblebihbesarkevariabelygdiukurnyadaripadakevariabel lain.

  6. ValiditasIndikatorFormatif • Outer model dg indikatorformatif, validitasnyadievaluasiberdasarkan substantive content-nya, yaitu dg membandingkanbesarnya relative weight danberdasarkansignifikansidariukuran weight tersebut.

  7. Reliabelitas Model Pengukuran • Dapatdiukur dg composite reliabelitydannilai AVE (Average Variance Extracted). • Composite reliabelitysekumpulanindikatorygmengukursuatuvariabeldapatdievaluasi dg konsistensi internal dan alpha Croncbach. • AVE adalahsuatuukuranreliabelitaskompo-nenyglebihkonservatifdarireliabelitaskomposit. • Model pengukurandisebutreliabeljikanilai composite reliabelityatau AVE minimal 0.50.

  8. Evaluasi Model Struktural • Nilai R-square, yaitupersentasevariansvariabel latent dependent ygdapatdijelaskanolehseluruhvariabel latent independent-nya, menggunakanukuran Stone-Geisser Q-square. • Besarnyakoefisienjalurstruktural (minimal 0.30 dandipenuhisyaratsignifikansinyadenganuji student t).

More Related